李宏毅Machine Learning学习笔记4 Classification: Probabilistic Generative Model

Classification 分类

分类要找一个function,输入就是对象 x ,输出是这个对象属于n个类别的哪一个。

  • Credit Scoring
    • Input: income, savings, profession, age, past financial history ……
    • Output: accept or refuse
  • Medical Diagnosis
    • Input: current symptoms, age, gender, past medical history ……
    • Output: which kind of diseases
  • Handwritten character recognition
    • 8000多个汉字 8000多个class
  • Face recognition
    • Input: image of a face, output: person

Example Application

神奇宝贝有很多的属性,比如电,火,水。要做的就是一个分类的问题:需要找到一个function,输入一只神奇宝贝,输出它是什么属性。

  • HP: hit points, or health, defines how much damage a pokemon can withstand before fainting 35
  • Attack: the base modifier for normal attacks (eg. Scratch,Punch) 55
  • Defense: the base damage resistance against normal attacks 40
  • SP Atk: special attack, the base modifier for special attacks (e.g. fire blast, bubble beam) 50
  • SP Def: the base damage resistance against special attacks 50
  • Speed: determines which pokemon attacks first each round 90

所以一只神奇宝贝可以用一个向量来表示,上述数字组成的向量。

How to do Classification

Classification as Regression

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值