pytorch:多项式回归

import numpy as np
import torch
from torch.autograd import Variable
from torch import nn, optim
import matplotlib.pyplot as plt

# 设置字体为中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

# 构造成次方矩阵
def make_fertures(x):
    x = x.unsqueeze(1)
    return torch.cat([x ** i for i in range(1, 4)], 1)

# y = 0.9+0.5*x+3*x*x+2.4x*x*x
W_target = torch.FloatTensor([0.5, 3, 2.4]).unsqueeze(1)
b_target = torch.FloatTensor([0.9])

# 计算x*w+b
def f(x):
    return x.mm(W_target) + b_target.item()


def get_batch(batch_size=32):
    random = torch.randn(batch_size)
    random = np.sort(random)
    random = torch.Tensor(random)
    x = make_fertures(random)
    y = f(x)
    if (torch.cuda.is_available()):
        return Variable(x).cuda(), Variable(y).cuda()
    else:
        return Variable(x), Variable(y)

# 多项式模型
class poly_model(nn.Module):
    def __init__(self):
        super(poly_model, self).__init__()
        self.poly = nn.Linear(3, 1)  # 输入时3维,输出是1维

    def forward(self, x):
        out = self.poly(x)
        return out

if torch.cuda.is_available():
    model = poly_model().cuda()
else:
    model = poly_model()
# 均方误差,随机梯度下降
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=1e-3)

epoch = 0  # 统计训练次数
ctn = []
lo = []
while True:
    batch_x, batch_y = get_batch()
    output = model(batch_x)
    loss = criterion(output, batch_y)
    print_loss = loss.item()
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    ctn.append(epoch)
    lo.append(print_loss)
    epoch += 1
    if (print_loss < 1e-3):
        break

print("Loss: {:.6f}  after {} batches".format(loss.item(), epoch))
print(
    "==> Learned function: y = {:.2f} + {:.2f}*x + {:.2f}*x^2 + {:.2f}*x^3".format(model.poly.bias[0], model.poly.weight[0][0],
                                                                                   model.poly.weight[0][1],
                                                                                   model.poly.weight[0][2]))
print("==> Actual function: y = {:.2f} + {:.2f}*x + {:.2f}*x^2 + {:.2f}*x^3".format(b_target[0], W_target[0][0],
                                                                                    W_target[1][0], W_target[2][0]))
# 1.可视化真实数据
predict = model(batch_x)
x = batch_x.numpy()[:, 0]  # x~1 x~2 x~3
plt.plot(x, batch_y.numpy(), 'ro')
plt.title(label='可视化真实数据')
plt.show()
# 2.可视化拟合函数
predict = predict.data.numpy()
plt.plot(x, predict, 'b')
plt.plot(x, batch_y.numpy(), 'ro')
plt.title(label='可视化拟合函数')
plt.show()
# 3.可视化训练次数和损失
plt.plot(ctn,lo)
plt.xlabel('训练次数')
plt.ylabel('损失值')
plt.title(label='训练次数与损失关系')
plt.show()

实验结果:

注意:批量产生数据后,进行一个排序,否则可视化时,不是按照x轴从小到大绘制,出现很多折线。对应代码:

 random = np.sort(random)
 random = torch.Tensor(random)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值