tensorflow入门一:tensorflow实现梯度下降

import  tensorflow as tf

import  matplotlib.pyplot as plt

import numpy as np

#构建数据
points_num = 100

vectors = []

#用numpy的正态随机分布函数生成100个点
#这些点的坐标值对应线性方程 y = 0.1*x +0.2

for i in range(points_num):
    x1 = np.random.normal(0.0,1.0)
    y1 = x1*0.1+0.2 +np.random.normal(0.0,0.06)
    vectors.append([x1,y1])

x_data = [v[0] for v in vectors]#x点的坐标
y_data = [v[1] for v in vectors]#y点的坐标



#图像1显示100个数据点

plt.plot(x_data,y_data,'r*',label= 'Original data')

plt.show()
#

#构建模型
w = tf.Variable(tf.random_uniform([1],-1,1))#初始化weight,产生1*1的矩阵,数值在-1到1之间
b = tf.Variable(tf.zeros([1]))#初始化bias
y = w * x_data+b

#定义损失函数(loss function)
loss = tf.reduce_mean(tf.square(y-y_data))

#用梯度下降优化器优化损失函数

optimizer = tf.train.GradientDescentOptimizer(0.075)#设置学习速率
train = optimizer.minimize(loss)

#创建会话

sess = tf.Session()

#初始化数据流中的变量

init = tf.global_variables_initializer()
sess.run(init)

#训练50步

for step in range(500):
    sess.run(train)
    #打印每一步的损失,权重,偏差
    print(step,sess.run(loss),sess.run(w),sess.run(b))

plt.plot(x_data,y_data,'r*',label= 'Original data')
plt.plot(x_data,sess.run(w)*x_data+sess.run(b),'r*',label= 'Original data')


plt.show()

sess.close()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值