十分钟入门Matplotlib

数据的处理、分析和可视化已经成为 Python 近年来最重要的应用之一。这种现象又进一步引出“大数据”分析等类似的话题,而大数据分析在人们所能预见的诸多领域内都有广泛应用,这其中就包含笔者个人感兴趣的机器学习。

Python 在处理数据、分析数据以及数据可视化方面拥有很多功能强大的工具,这也是 Python 在科学领域中能够迅速发展的一个主要原因。

在接下来的一系列文章中,我们将介绍 Python 科学计算中涉及的主要的库,并且学习如何使用它们处理数据以满足我们的需求。但是我们并非只是停留在快速写出模板代码来使用这些库的层面上,我们还会了解这些库背后的数学知识,以帮助我们更好地理解库的运行原理。

首先,我们将从一个功能非常强大的库 Matplotlib 开始介绍,在后面的文章中也会一直用到这个库。

什么是 Matplotlib?

简单来说,Matplotlib 是 Python 的一个绘图库。它包含了大量的工具,你可以使用这些工具创建各种图形,包括简单的散点图,正弦曲线,甚至是三维图形。Python 科学计算社区经常使用它完成数据可视化的工作。

你可以在他们的网站上了解到更多 Matplotlib 背后的设计思想,但是我强烈建议你先浏览一下他们的图库,体会一下这个库的各种神奇功能。

画一个简单的图形

首先我们要画一条在 [0, 2pi] 上的正弦曲线。读者应该会注意到我们在这里使用了 Numpy 库,但是即便你没有使用过这个库也不用担心,在后面的文章中我们也会介绍到 Numpy 库。

Python
<span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span> <span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
1
2
< span class = "kn" > import < / span > < span class = "nn" > matplotlib . pyplot < / span > < span class = "kn" > as < / span > < span class = "nn" > plt < / span >
< span class = "kn" > import < / span > < span class = "nn" > numpy < / span > < span class = "kn" > as < / span > < span class = "nn" > np < / span >

以上这些就是我们将要用到的导入模块。在我的上一篇文章(以及另一篇文章)中都提到过 from x import * 是一种糟糕的导入方式。我们不想在程序里重复书写 matplotlib.pyplot 和 numpy,这种书写方式过于冗长,因此我们采用了上面的折中写法。

Python
<span class="c"># 简单的绘图</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> <span class="c"># 如果没有第一个参数 x,图形的 x 坐标默认为数组的索引</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span> <span class="c"># 显示图形</span>
1
2
3
4
< span class = "c" > # 简单的绘图</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > linspace < / span > < span class = "p" > ( < / span > < span class = "mi" > 0 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > pi < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) ) < / span > < span class = "c" > # 如果没有第一个参数 x,图形的 x 坐标默认为数组的索引</span>
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span > < span class = "c" > # 显示图形</span>

上面的代码将画出一个简单的正弦曲线。np.linspace(0, 2 * np.pi, 50) 这段代码将会生成一个包含 50 个元素的数组,这 50 个元素均匀的分布在 [0, 2pi] 的区间上。

plot 命令以一种简洁优雅的方式创建了图形。提醒一下,如果没有第一个参数 x,图形的 x 轴坐标将不再是 0 到 2pi,而应该是数组的索引范围。

最后一行代码 `plt.show() 将图形显示出来,如果没有这行代码图像就不会显示。

运行代码后应该会类似得到下面的图形:

在一张图上绘制两个数据集

大多数时候读者可能更想在一张图上绘制多个数据集。用 Matplotlib 也可以轻松实现这一点。

Python
<span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">x</span><span class="p">))</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > linspace < / span > < span class = "p" > ( < / span > < span class = "mi" > 0 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > pi < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span >
         < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > x < / span > < span class = "p" > ) ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

上面的代码同时绘制了表示函数 sin(x) 和 sin(2x) 的图形。这段代码和前面绘制一个数据集的代码几乎完全相同,只有一点例外,这段代码在调用 plt.plot() 的时候多传入了一个数据集,并用逗号与第一个数据集分隔开。

最后你会得到类似于下面包含两条曲线的图形:

自定义图形的外观

当在同一个图形上展示多个数据集时,通过改变线条的外观来区分不同的数据集变得非常必要。

Python
<span class="c"># 自定义曲线的外观</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s">'r-o'</span><span class="p">,</span> <span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s">'g--'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
5
< span class = "c" > # 自定义曲线的外观</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > linspace < / span > < span class = "p" > ( < / span > < span class = "mi" > 0 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > pi < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span > < span class = "s" > 'r-o' < / span > < span class = "p" > , < / span >
         < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > cos < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span > < span class = "s" > 'g--' < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

上述代码展示了两种不同的曲线样式:'r-o' 和 'g--'。字母 'r' 和 'g' 代表线条的颜色,后面的符号代表线和点标记的类型。例如 '-o' 代表包含实心点标记的实线,'--' 代表虚线。其他的参数需要读者自己去尝试,这也是学习 Matplotlib 最好的方式。

颜色: 蓝色 - 'b' 绿色 - 'g' 红色 - 'r' 青色 - 'c' 品红 - 'm' 黄色 - 'y' 黑色 - 'k'('b'代表蓝色,所以这里用黑色的最后一个字母) 白色 - 'w'

线: 直线 - '-' 虚线 - '--' 点线 - ':' 点划线 - '-.'

常用点标记 点 - '.' 像素 - ',' 圆 - 'o' 方形 - 's' 三角形 - '^' 更多点标记样式点击这里

最后你会得到类似下面的图形:

使用子图

使用子图可以在一个窗口绘制多张图。

Python
<span class="c"># 使用子图</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c"># (行,列,活跃区)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s">'r'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s">'g'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
5
6
7
< span class = "c" > # 使用子图</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > linspace < / span > < span class = "p" > ( < / span > < span class = "mi" > 0 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > pi < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > subplot < / span > < span class = "p" > ( < / span > < span class = "mi" > 2 < / span > < span class = "p" > , < / span > < span class = "mi" > 1 < / span > < span class = "p" > , < / span > < span class = "mi" > 1 < / span > < span class = "p" > ) < / span > < span class = "c" > # (行,列,活跃区)</span>
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span > < span class = "s" > 'r' < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > subplot < / span > < span class = "p" > ( < / span > < span class = "mi" > 2 < / span > < span class = "p" > , < / span > < span class = "mi" > 1 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > cos < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span > < span class = "s" > 'g' < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

使用子图只需要一个额外的步骤,就可以像前面的例子一样绘制数据集。即在调用 plot() 函数之前需要先调用 subplot() 函数。该函数的第一个参数代表子图的总行数,第二个参数代表子图的总列数,第三个参数代表活跃区域。

活跃区域代表当前子图所在绘图区域,绘图区域是按从左至右,从上至下的顺序编号。例如在 4×4 的方格上,活跃区域 6 在方格上的坐标为 (2, 2)。

最终你会得到类似下面的图形:

简单的散点图

散点图是一堆离散点的集合。用 Matplotlib 画散点图也同样非常简单。

Python
<span class="c"># 简单的散点图</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">x</span><span class="p">,</span><span class="n">y</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
5
< span class = "c" > # 简单的散点图</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > linspace < / span > < span class = "p" > ( < / span > < span class = "mi" > 0 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > pi < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > y < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > scatter < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > y < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

正如上面代码所示,你只需要调用 scatter() 函数并传入两个分别代表 x 坐标和 y 坐标的数组。注意,我们通过 plot 命令并将线的样式设置为 'bo' 也可以实现同样的效果。

最后你会得到类似下面的无线图形:

彩色映射散点图

另一种你可能用到的图形是彩色映射散点图。这里我们会根据数据的大小给每个点赋予不同的颜色和大小,并在图中添加一个颜色栏。

Python
<span class="c"># 彩色映射散点图</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1000</span><span class="p">)</span> <span class="n">y</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1000</span><span class="p">)</span> <span class="n">size</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1000</span><span class="p">)</span> <span class="o">*</span> <span class="mi">50</span> <span class="n">colour</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">rand</span><span class="p">(</span><span class="mi">1000</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">colour</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">colorbar</span><span class="p">()</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
5
6
7
8
< span class = "c" > # 彩色映射散点图</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > random < / span > < span class = "o" > . < / span > < span class = "n" > rand < / span > < span class = "p" > ( < / span > < span class = "mi" > 1000 < / span > < span class = "p" > ) < / span >
< span class = "n" > y < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > random < / span > < span class = "o" > . < / span > < span class = "n" > rand < / span > < span class = "p" > ( < / span > < span class = "mi" > 1000 < / span > < span class = "p" > ) < / span >
< span class = "n" > size < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > random < / span > < span class = "o" > . < / span > < span class = "n" > rand < / span > < span class = "p" > ( < / span > < span class = "mi" > 1000 < / span > < span class = "p" > ) < / span > < span class = "o" > * < / span > < span class = "mi" > 50 < / span >
< span class = "n" > colour < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > random < / span > < span class = "o" > . < / span > < span class = "n" > rand < / span > < span class = "p" > ( < / span > < span class = "mi" > 1000 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > scatter < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > y < / span > < span class = "p" > , < / span > < span class = "n" > size < / span > < span class = "p" > , < / span > < span class = "n" > colour < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > colorbar < / span > < span class = "p" > ( ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

上面的代码大量的用到了 np.random.rand(1000),原因是我们绘图的数据都是随机产生的。

同前面一样我们用到了 scatter() 函数,但是这次我们传入了另外的两个参数,分别为所绘点的大小和颜色。通过这种方式使得图上点的大小和颜色根据数据的大小产生变化。

然后我们用 colorbar() 函数添加了一个颜色栏。

最后你会得到类似于下面的彩色散点图:

直方图

直方图是另一种常见的图形,也可以通过几行代码创建出来。

Python
<span class="c"># 直方图</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1000</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
< span class = "c" > # 直方图</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > random < / span > < span class = "o" > . < / span > < span class = "n" > randn < / span > < span class = "p" > ( < / span > < span class = "mi" > 1000 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > hist < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

直方图是 Matplotlib 中最简单的图形之一。你只需要给 hist() 函数传入一个包含数据的数组。第二个参数代表数据容器的个数。数据容器代表不同的值的间隔,并用来包含我们的数据。数据容器越多,图形上的数据条就越多。

最终你会得到类似下面的直方图:

标题,标签和图例

当需要快速创建图形时,你可能不需要为图形添加标签。但是当构建需要展示的图形时,你就需要添加标题,标签和图例。

Python
<span class="c"># 添加标题,坐标轴标记和图例</span> <span class="n">x</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">pi</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">sin</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s">'r-x'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">'Sin(x)'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">cos</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s">'g-^'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s">'Cos(x)'</span><span class="p">)</span> <span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span> <span class="c"># 展示图例</span> <span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s">'Rads'</span><span class="p">)</span> <span class="c"># 给 x 轴添加标签</span> <span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">'Amplitude'</span><span class="p">)</span> <span class="c"># 给 y 轴添加标签</span> <span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">'Sin and Cos Waves'</span><span class="p">)</span> <span class="c"># 添加图形标题</span> <span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
1
2
3
4
5
6
7
8
9
< span class = "c" > # 添加标题,坐标轴标记和图例</span>
< span class = "n" > x < / span > < span class = "o" >= < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > linspace < / span > < span class = "p" > ( < / span > < span class = "mi" > 0 < / span > < span class = "p" > , < / span > < span class = "mi" > 2 < / span > < span class = "o" > * < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > pi < / span > < span class = "p" > , < / span > < span class = "mi" > 50 < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > sin < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span > < span class = "s" > 'r-x' < / span > < span class = "p" > , < / span > < span class = "n" > label < / span > < span class = "o" >= < / span > < span class = "s" > 'Sin(x)' < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > plot < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > , < / span > < span class = "n" > np < / span > < span class = "o" > . < / span > < span class = "n" > cos < / span > < span class = "p" > ( < / span > < span class = "n" > x < / span > < span class = "p" > ) , < / span > < span class = "s" > 'g-^' < / span > < span class = "p" > , < / span > < span class = "n" > label < / span > < span class = "o" >= < / span > < span class = "s" > 'Cos(x)' < / span > < span class = "p" > ) < / span >
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > legend < / span > < span class = "p" > ( ) < / span > < span class = "c" > # 展示图例</span>
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > xlabel < / span > < span class = "p" > ( < / span > < span class = "s" > 'Rads' < / span > < span class = "p" > ) < / span > < span class = "c" > # 给 x 轴添加标签</span>
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > ylabel < / span > < span class = "p" > ( < / span > < span class = "s" > 'Amplitude' < / span > < span class = "p" > ) < / span > < span class = "c" > # 给 y 轴添加标签</span>
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > title < / span > < span class = "p" > ( < / span > < span class = "s" > 'Sin and Cos Waves' < / span > < span class = "p" > ) < / span > < span class = "c" > # 添加图形标题</span>
< span class = "n" > plt < / span > < span class = "o" > . < / span > < span class = "n" > show < / span > < span class = "p" > ( ) < / span >

为了给图形添加图例,我们需要在 plot() 函数中添加命名参数 'label' 并赋予该参数相应的标签。然后调用 legend() 函数就会在我们的图形中添加图例。

接下来我们只需要调用函数 title()xlabel() 和 ylabel() 就可以为图形添加标题和标签。

你会得到类似于下面这张拥有标题、标签和图例的图形:

以上内容应该足够帮助读者开始使用 Matplotlib 和 Python 实现数据可视化,但是这些内容并不全面。我强烈建议读者亲自尝试使用这个工具,笔者也是通过这种方式掌握了这个工具。画一些图形,改变样式并使用子图功能,然后你就会很快掌握 Matplotlib 的使用方式。

这是一篇是关于如何使用 Matplotlib 和 Python 完成数据可视化的文章,也是 Python 科学计算系列文章中的第一篇。我希望读者能从中有所收获,并且对 Matplotlib 库更加熟悉。




  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值