pandas 笔记

http://blog.51reboot.com/10%E5%88%86%E9%92%9F%E4%B8%8A%E6%89%8B-python-pandas/

官方 10 分钟入门文档(http://pandas.pydata.org/pandas-docs/stable/10min.html)
这是 pandas 的简短介绍,主要面向新用户。你可以看到更复杂的文档Cookbook(http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook)
[toc]

Environment

  • pandas 0.21.0
  • Python 3.6
  • jupyter notebook

开始

习惯上,我们导入如下:

 

import pandas as pd<br /><br> import numpy as np<br /><br> import matplotlib.pyplot as plt
1
2
3
import pandas as pd
import numpy as np
import matplotlib . pyplot as plt

对象创建

具体参阅数据结构介绍
通过传递一个值列表来创建一个 Series,让 pandas 创建一个默认的整数索引:

 

In [4]: s = pd.Series([1,3,5,np.nan,6,8])</p><br> <p>In [5]: s<br /><br> Out[5]:<br /><br> 0 1.0<br /><br> 1 3.0<br /><br> 2 5.0<br /><br> 3 NaN<br /><br> 4 6.0<br /><br> 5 8.0<br /><br> dtype: float64

1
2
3
4
5
6
7
8
9
10
11
In [ 4 ] : s = pd . Series ( [ 1 , 3 , 5 , np . nan , 6 , 8 ] )
In [ 5 ] : s
Out [ 5 ] :
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype : float64

通过传递具有日期时间索引和标签列的 numpy 数组来创建一个 DataFrame:

 

In [6]: dates = pd.date_range('20130101', periods=6)</p><br> <p>In [7]: dates<br /><br> Out[7]:<br /><br> DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',<br /><br> '2013-01-05', '2013-01-06'],<br /><br> dtype='datetime64[ns]', freq='D')</p><br> <p>In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))</p><br> <p>In [9]: df<br /><br> Out[9]:<br /><br> A B C D<br /><br> 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 -1.087401<br /><br> 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [ 6 ] : dates = pd . date_range ( '20130101' , periods = 6 )
In [ 7 ] : dates
Out [ 7 ] :
DatetimeIndex ( [ '2013-01-01' , '2013-01-02' , '2013-01-03' , '2013-01-04' ,
'2013-01-05' , '2013-01-06' ] ,
dtype = 'datetime64[ns]' , freq = 'D' )
In [ 8 ] : df = pd . DataFrame ( np . random . randn ( 6 , 4 ) , index = dates , columns = list ( 'ABCD' ) )
In [ 9 ] : df
Out [ 9 ] :
A B C D
2013 - 01 - 01 0.469112 - 0.282863 - 1.509059 - 1.135632
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860
2013 - 01 - 05 - 0.424972 0.567020 0.276232 - 1.087401
2013 - 01 - 06 - 0.673690 0.113648 - 1.478427 0.524988

通过传递一个可以转换为一系列对象的字典来创建一个 DataFrame。

 

In [10]: df2 = pd.DataFrame({ 'A' : 1.,<br /><br> ....: 'B' : pd.Timestamp('20130102'),<br /><br> ....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),<br /><br> ....: 'D' : np.array([3] * 4,dtype='int32'),<br /><br> ....: 'E' : pd.Categorical(["test","train","test","train"]),<br /><br> ....: 'F' : 'foo' })<br /><br> ....:</p><br> <p>In [11]: df2<br /><br> Out[11]:<br /><br> A B C D E F<br /><br> 0 1.0 2013-01-02 1.0 3 test foo<br /><br> 1 1.0 2013-01-02 1.0 3 train foo<br /><br> 2 1.0 2013-01-02 1.0 3 test foo<br /><br> 3 1.0 2013-01-02 1.0 3 train foo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [ 10 ] : df2 = pd . DataFrame ( { 'A' : 1. ,
. . . . : 'B' : pd . Timestamp ( '20130102' ) ,
. . . . : 'C' : pd . Series ( 1 , index = list ( range ( 4 ) ) , dtype = 'float32' ) ,
. . . . : 'D' : np . array ( [ 3 ] * 4 , dtype = 'int32' ) ,
. . . . : 'E' : pd . Categorical ( [ "test" , "train" , "test" , "train" ] ) ,
. . . . : 'F' : 'foo' } )
. . . . :
In [ 11 ] : df2
Out [ 11 ] :
A B C D E F
0 1.0 2013 - 01 - 02 1.0 3 test foo
1 1.0 2013 - 01 - 02 1.0 3 train foo
2 1.0 2013 - 01 - 02 1.0 3 test foo
3 1.0 2013 - 01 - 02 1.0 3 train foo

有特定的 dtypes

 

In [12]: df2.dtypes<br /><br> Out[12]:<br /><br> A float64<br /><br> B datetime64[ns]<br /><br> C float32<br /><br> D int32<br /><br> E category<br /><br> F object<br /><br> dtype: object
1
2
3
4
5
6
7
8
9
In [ 12 ] : df2 . dtypes
Out [ 12 ] :
A float64
B datetime64 [ ns ]
C float32
D int32
E category
F object
dtype : object

如果您使用 IPython,按下 TAB 将提示补全。以下是将要完成的属性的子集:

 

In [13]: df2.<TAB><br /><br> df2.A df2.bool<br /><br> df2.abs df2.boxplot<br /><br> df2.add df2.C<br /><br> df2.add_prefix df2.clip<br /><br> df2.add_suffix df2.clip_lower<br /><br> df2.align df2.clip_upper<br /><br> df2.all df2.columns<br /><br> df2.any df2.combine<br /><br> df2.append df2.combine_first<br /><br> df2.apply df2.compound<br /><br> df2.applymap df2.consolidate<br /><br> df2.D
1
2
3
4
5
6
7
8
9
10
11
12
13
In [ 13 ] : df2 . < TAB >
df2 . A df2 . bool
df2 . abs df2 . boxplot
df2 . add df2 . C
df2 . add_prefix df2 . clip
df2 . add_suffix df2 . clip_lower
df2 . align df2 . clip_upper
df2 . all df2 . columns
df2 . any df2 . combine
df2 . append df2 . combine_first
df2 . apply df2 . compound
df2 . applymap df2 . consolidate
df2 . D

如您所见,列 A,B,C 和 D 自动完成。 E 也在那里;为了简洁,其余的属性被省略。

查看数据

具体参阅基本部分(http://pandas.pydata.org/pandas-docs/stable/basics.html#basics)
查看数据集中的最开始和最末尾的行

 

In [14]: df.head()<br /><br> Out[14]:<br /><br> A B C D<br /><br> 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 -1.087401</p><br> <p>In [15]: df.tail(3)<br /><br> Out[15]:<br /><br> A B C D<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 -1.087401<br /><br> 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [ 14 ] : df . head ( )
Out [ 14 ] :
A B C D
2013 - 01 - 01 0.469112 - 0.282863 - 1.509059 - 1.135632
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860
2013 - 01 - 05 - 0.424972 0.567020 0.276232 - 1.087401
In [ 15 ] : df . tail ( 3 )
Out [ 15 ] :
A B C D
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860
2013 - 01 - 05 - 0.424972 0.567020 0.276232 - 1.087401
2013 - 01 - 06 - 0.673690 0.113648 - 1.478427 0.524988

显示索引,列和底层 numpy 数据

 

In [16]: df.index<br /><br> Out[16]:<br /><br> DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',<br /><br> '2013-01-05', '2013-01-06'],<br /><br> dtype='datetime64[ns]', freq='D')</p><br> <p>In [17]: df.columns<br /><br> Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')</p><br> <p>In [18]: df.values<br /><br> Out[18]:<br /><br> array([[ 0.4691, -0.2829, -1.5091, -1.1356],<br /><br> [ 1.2121, -0.1732, 0.1192, -1.0442],<br /><br> [-0.8618, -2.1046, -0.4949, 1.0718],<br /><br> [ 0.7216, -0.7068, -1.0396, 0.2719],<br /><br> [-0.425 , 0.567 , 0.2762, -1.0874],<br /><br> [-0.6737, 0.1136, -1.4784, 0.525 ]])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
In [ 16 ] : df . index
Out [ 16 ] :
DatetimeIndex ( [ '2013-01-01' , '2013-01-02' , '2013-01-03' , '2013-01-04' ,
'2013-01-05' , '2013-01-06' ] ,
dtype = 'datetime64[ns]' , freq = 'D' )
In [ 17 ] : df . columns
Out [ 17 ] : Index ( [ 'A' , 'B' , 'C' , 'D' ] , dtype = 'object' )
In [ 18 ] : df . values
Out [ 18 ] :
array ( [ [ 0.4691 , - 0.2829 , - 1.5091 , - 1.1356 ] ,
[ 1.2121 , - 0.1732 , 0.1192 , - 1.0442 ] ,
[ - 0.8618 , - 2.1046 , - 0.4949 , 1.0718 ] ,
[ 0.7216 , - 0.7068 , - 1.0396 , 0.2719 ] ,
[ - 0.425 , 0.567 , 0.2762 , - 1.0874 ] ,
[ - 0.6737 , 0.1136 , - 1.4784 , 0.525 ] ] )

描述显示您的数据的快速统计结果( std 是标准偏差)

 

In [19]: df.describe()<br /><br> Out[19]:<br /><br> A B C D<br /><br> count 6.000000 6.000000 6.000000 6.000000<br /><br> mean 0.073711 -0.431125 -0.687758 -0.233103<br /><br> std 0.843157 0.922818 0.779887 0.973118<br /><br> min -0.861849 -2.104569 -1.509059 -1.135632<br /><br> 25% -0.611510 -0.600794 -1.368714 -1.076610<br /><br> 50% 0.022070 -0.228039 -0.767252 -0.386188<br /><br> 75% 0.658444 0.041933 -0.034326 0.461706<br /><br> max 1.212112 0.567020 0.276232 1.071804
1
2
3
4
5
6
7
8
9
10
11
In [ 19 ] : df . describe ( )
Out [ 19 ] :
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 - 0.431125 - 0.687758 - 0.233103
std 0.843157 0.922818 0.779887 0.973118
min - 0.861849 - 2.104569 - 1.509059 - 1.135632
25 % - 0.611510 - 0.600794 - 1.368714 - 1.076610
50 % 0.022070 - 0.228039 - 0.767252 - 0.386188
75 % 0.658444 0.041933 - 0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

转置数据

 

In [20]: df.T<br /><br> Out[20]:<br /><br> 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06<br /><br> A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690<br /><br> B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648<br /><br> C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427<br /><br> D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
1
2
3
4
5
6
7
In [ 20 ] : df . T
Out [ 20 ] :
2013 - 01 - 01 2013 - 01 - 02 2013 - 01 - 03 2013 - 01 - 04 2013 - 01 - 05 2013 - 01 - 06
A 0.469112 1.212112 - 0.861849 0.721555 - 0.424972 - 0.673690
B - 0.282863 - 0.173215 - 2.104569 - 0.706771 0.567020 0.113648
C - 1.509059 0.119209 - 0.494929 - 1.039575 0.276232 - 1.478427
D - 1.135632 - 1.044236 1.071804 0.271860 - 1.087401 0.524988

按轴排序

 

In [21]: df.sort_index(axis=1, ascending=False)<br /><br> Out[21]:<br /><br> D C B A<br /><br> 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112<br /><br> 2013-01-02 -1.044236 0.119209 -0.173215 1.212112<br /><br> 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849<br /><br> 2013-01-04 0.271860 -1.039575 -0.706771 0.721555<br /><br> 2013-01-05 -1.087401 0.276232 0.567020 -0.424972<br /><br> 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
1
2
3
4
5
6
7
8
9
In [ 21 ] : df . sort_index ( axis = 1 , ascending = False )
Out [ 21 ] :
D C B A
2013 - 01 - 01 - 1.135632 - 1.509059 - 0.282863 0.469112
2013 - 01 - 02 - 1.044236 0.119209 - 0.173215 1.212112
2013 - 01 - 03 1.071804 - 0.494929 - 2.104569 - 0.861849
2013 - 01 - 04 0.271860 - 1.039575 - 0.706771 0.721555
2013 - 01 - 05 - 1.087401 0.276232 0.567020 - 0.424972
2013 - 01 - 06 0.524988 - 1.478427 0.113648 - 0.673690

按值排序

 

In [22]: df.sort_values(by='B')<br /><br> Out[22]:<br /><br> A B C D<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860<br /><br> 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-06 -0.673690 0.113648 -1.478427 0.524988<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
1
2
3
4
5
6
7
8
9
In [ 22 ] : df . sort_values ( by = 'B' )
Out [ 22 ] :
A B C D
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860
2013 - 01 - 01 0.469112 - 0.282863 - 1.509059 - 1.135632
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 06 - 0.673690 0.113648 - 1.478427 0.524988
2013 - 01 - 05 - 0.424972 0.567020 0.276232 - 1.087401

选择

请参阅索引文档索引和选择数据(http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing)和多索引/高级索引(http://pandas.pydata.org/pandas-docs/stable/advanced.html#advanced)

直接选择

选择一个产生 Series 的列,相当于 df.A

 

In [23]: df['A']<br /><br> Out[23]:<br /><br> 2013-01-01 0.469112<br /><br> 2013-01-02 1.212112<br /><br> 2013-01-03 -0.861849<br /><br> 2013-01-04 0.721555<br /><br> 2013-01-05 -0.424972<br /><br> 2013-01-06 -0.673690<br /><br> Freq: D, Name: A, dtype: float64
1
2
3
4
5
6
7
8
9
In [ 23 ] : df [ 'A' ]
Out [ 23 ] :
2013 - 01 - 01 0.469112
2013 - 01 - 02 1.212112
2013 - 01 - 03 - 0.861849
2013 - 01 - 04 0.721555
2013 - 01 - 05 - 0.424972
2013 - 01 - 06 - 0.673690
Freq : D , Name : A , dtype : float64

选择通过 [] ,哪些切片的行。

 

In [24]: df[0:3]<br /><br> Out[24]:<br /><br> A B C D<br /><br> 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804</p><br> <p>In [25]: df['20130102':'20130104']<br /><br> Out[25]:<br /><br> A B C D<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
1
2
3
4
5
6
7
8
9
10
11
12
13
In [ 24 ] : df [ 0 : 3 ]
Out [ 24 ] :
A B C D
2013 - 01 - 01 0.469112 - 0.282863 - 1.509059 - 1.135632
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804
In [ 25 ] : df [ '20130102' : '20130104' ]
Out [ 25 ] :
A B C D
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860

按标签选择

请参阅按标签选择(http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-label)
使用标签获取整行数据

 

In [26]: df.loc[dates[0]]<br /><br> Out[26]:<br /><br> A 0.469112<br /><br> B -0.282863<br /><br> C -1.509059<br /><br> D -1.135632<br /><br> Name: 2013-01-01 00:00:00, dtype: float64
1
2
3
4
5
6
7
In [ 26 ] : df . loc [ dates [ 0 ] ]
Out [ 26 ] :
A 0.469112
B - 0.282863
C - 1.509059
D - 1.135632
Name : 2013 - 01 - 01 00 : 00 : 00 , dtype : float64

通过标签选择多列

 

In [27]: df.loc[:,['A','B']]<br /><br> Out[27]:<br /><br> A B<br /><br> 2013-01-01 0.469112 -0.282863<br /><br> 2013-01-02 1.212112 -0.173215<br /><br> 2013-01-03 -0.861849 -2.104569<br /><br> 2013-01-04 0.721555 -0.706771<br /><br> 2013-01-05 -0.424972 0.567020<br /><br> 2013-01-06 -0.673690 0.113648
1
2
3
4
5
6
7
8
9
In [ 27 ] : df . loc [ : , [ 'A' , 'B' ] ]
Out [ 27 ] :
A B
2013 - 01 - 01 0.469112 - 0.282863
2013 - 01 - 02 1.212112 - 0.173215
2013 - 01 - 03 - 0.861849 - 2.104569
2013 - 01 - 04 0.721555 - 0.706771
2013 - 01 - 05 - 0.424972 0.567020
2013 - 01 - 06 - 0.673690 0.113648

显示标签切片,包括两个端点

 

In [28]: df.loc['20130102':'20130104',['A','B']]<br /><br> Out[28]:<br /><br> A B<br /><br> 2013-01-02 1.212112 -0.173215<br /><br> 2013-01-03 -0.861849 -2.104569<br /><br> 2013-01-04 0.721555 -0.706771
1
2
3
4
5
6
In [ 28 ] : df . loc [ '20130102' : '20130104' , [ 'A' , 'B' ] ]
Out [ 28 ] :
A B
2013 - 01 - 02 1.212112 - 0.173215
2013 - 01 - 03 - 0.861849 - 2.104569
2013 - 01 - 04 0.721555 - 0.706771

减少返回的对象的维度

 

In [29]: df.loc['20130102',['A','B']]<br /><br> Out[29]:<br /><br> A 1.212112<br /><br> B -0.173215<br /><br> Name: 2013-01-02 00:00:00, dtype: float64
1
2
3
4
5
In [ 29 ] : df . loc [ '20130102' , [ 'A' , 'B' ] ]
Out [ 29 ] :
A 1.212112
B - 0.173215
Name : 2013 - 01 - 02 00 : 00 : 00 , dtype : float64

获得标量值

 

In [30]: df.loc[dates[0],'A']<br /><br> Out[30]: 0.46911229990718628<br /><br> 快速访问标量(等同于之前的方法)<br /><br> In [31]: df.at[dates[0],'A']<br /><br> Out[31]: 0.46911229990718628
1
2
3
4
5
In [ 30 ] : df . loc [ dates [ 0 ] , 'A' ]
Out [ 30 ] : 0.46911229990718628
快速访问标量(等同于之前的方法)
In [ 31 ] : df . at [ dates [ 0 ] , 'A' ]
Out [ 31 ] : 0.46911229990718628

按位置选择

请参阅按位置选择(http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-integer)
通过传入整数的位置进行选择

 

In [32]: df.iloc[3]<br /><br> Out[32]:<br /><br> A 0.721555<br /><br> B -0.706771<br /><br> C -1.039575<br /><br> D 0.271860<br /><br> Name: 2013-01-04 00:00:00, dtype: float64
1
2
3
4
5
6
7
In [ 32 ] : df . iloc [ 3 ]
Out [ 32 ] :
A 0.721555
B - 0.706771
C - 1.039575
D 0.271860
Name : 2013 - 01 - 04 00 : 00 : 00 , dtype : float64

通过整数片,类似于 numpy / Python

 

In [33]: df.iloc[3:5,0:2]<br /><br> Out[33]:<br /><br> A B<br /><br> 2013-01-04 0.721555 -0.706771<br /><br> 2013-01-05 -0.424972 0.567020
1
2
3
4
5
In [ 33 ] : df . iloc [ 3 : 5 , 0 : 2 ]
Out [ 33 ] :
A B
2013 - 01 - 04 0.721555 - 0.706771
2013 - 01 - 05 - 0.424972 0.567020

整数位置的位置列表,类似于 numpy / Python 风格

 

In [34]: df.iloc[[1,2,4],[0,2]]<br /><br> Out[34]:<br /><br> A C<br /><br> 2013-01-02 1.212112 0.119209<br /><br> 2013-01-03 -0.861849 -0.494929<br /><br> 2013-01-05 -0.424972 0.276232
1
2
3
4
5
6
In [ 34 ] : df . iloc [ [ 1 , 2 , 4 ] , [ 0 , 2 ] ]
Out [ 34 ] :
A C
2013 - 01 - 02 1.212112 0.119209
2013 - 01 - 03 - 0.861849 - 0.494929
2013 - 01 - 05 - 0.424972 0.276232

用于明确地切割行

 

In [35]: df.iloc[1:3,:]<br /><br> Out[35]:<br /><br> A B C D<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
1
2
3
4
5
In [ 35 ] : df . iloc [ 1 : 3 , : ]
Out [ 35 ] :
A B C D
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804

用于明确地切分列

 

In [36]: df.iloc[:,1:3]<br /><br> Out[36]:<br /><br> B C<br /><br> 2013-01-01 -0.282863 -1.509059<br /><br> 2013-01-02 -0.173215 0.119209<br /><br> 2013-01-03 -2.104569 -0.494929<br /><br> 2013-01-04 -0.706771 -1.039575<br /><br> 2013-01-05 0.567020 0.276232<br /><br> 2013-01-06 0.113648 -1.478427
1
2
3
4
5
6
7
8
9
In [ 36 ] : df . iloc [ : , 1 : 3 ]
Out [ 36 ] :
B C
2013 - 01 - 01 - 0.282863 - 1.509059
2013 - 01 - 02 - 0.173215 0.119209
2013 - 01 - 03 - 2.104569 - 0.494929
2013 - 01 - 04 - 0.706771 - 1.039575
2013 - 01 - 05 0.567020 0.276232
2013 - 01 - 06 0.113648 - 1.478427

为了明确地获取一个值

 

In [37]: df.iloc[1,1]<br /><br> Out[37]: -0.17321464905330858
1
2
In [ 37 ] : df . iloc [ 1 , 1 ]
Out [ 37 ] : - 0.17321464905330858

为了快速访问标量(等同于之前的方法)

 

In [38]: df.iat[1,1]<br /><br> Out[38]: -0.17321464905330858
1
2
In [ 38 ] : df . iat [ 1 , 1 ]
Out [ 38 ] : - 0.17321464905330858

布尔索引

使用单个列的值来选择数据。

 

In [39]: df[df.A > 0]<br /><br> Out[39]:<br /><br> A B C D<br /><br> 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
1
2
3
4
5
6
In [ 39 ] : df [ df . A > 0 ]
Out [ 39 ] :
A B C D
2013 - 01 - 01 0.469112 - 0.282863 - 1.509059 - 1.135632
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860

从满足布尔条件的 DataFrame 中选择值。

 

In [40]: df[df > 0]<br /><br> Out[40]:<br /><br> A B C D<br /><br> 2013-01-01 0.469112 NaN NaN NaN<br /><br> 2013-01-02 1.212112 NaN 0.119209 NaN<br /><br> 2013-01-03 NaN NaN NaN 1.071804<br /><br> 2013-01-04 0.721555 NaN NaN 0.271860<br /><br> 2013-01-05 NaN 0.567020 0.276232 NaN<br /><br> 2013-01-06 NaN 0.113648 NaN 0.524988
1
2
3
4
5
6
7
8
9
In [ 40 ] : df [ df > 0 ]
Out [ 40 ] :
A B C D
2013 - 01 - 01 0.469112 NaN NaN NaN
2013 - 01 - 02 1.212112 NaN 0.119209 NaN
2013 - 01 - 03 NaN NaN NaN 1.071804
2013 - 01 - 04 0.721555 NaN NaN 0.271860
2013 - 01 - 05 NaN 0.567020 0.276232 NaN
2013 - 01 - 06 NaN 0.113648 NaN 0.524988

使用 isin()方法进行过滤:

 

In [41]: df2 = df.copy()</p><br> <p>In [42]: df2['E'] = ['one', 'one','two','three','four','three']</p><br> <p>In [43]: df2<br /><br> Out[43]:<br /><br> A B C D E<br /><br> 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four<br /><br> 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three</p><br> <p>In [44]: df2[df2['E'].isin(['two','four'])]<br /><br> Out[44]:<br /><br> A B C D E<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [ 41 ] : df2 = df . copy ( )
In [ 42 ] : df2 [ 'E' ] = [ 'one' , 'one' , 'two' , 'three' , 'four' , 'three' ]
In [ 43 ] : df2
Out [ 43 ] :
A B C D E
2013 - 01 - 01 0.469112 - 0.282863 - 1.509059 - 1.135632 one
2013 - 01 - 02 1.212112 - 0.173215 0.119209 - 1.044236 one
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804 two
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 0.271860 three
2013 - 01 - 05 - 0.424972 0.567020 0.276232 - 1.087401 four
2013 - 01 - 06 - 0.673690 0.113648 - 1.478427 0.524988 three
In [ 44 ] : df2 [ df2 [ 'E' ] . isin ( [ 'two' , 'four' ] ) ]
Out [ 44 ] :
A B C D E
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 1.071804 two
2013 - 01 - 05 - 0.424972 0.567020 0.276232 - 1.087401 four

设置

设置新列自动按索引排列数据

 

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))</p><br> <p>In [46]: s1<br /><br> Out[46]:<br /><br> 2013-01-02 1<br /><br> 2013-01-03 2<br /><br> 2013-01-04 3<br /><br> 2013-01-05 4<br /><br> 2013-01-06 5<br /><br> 2013-01-07 6<br /><br> Freq: D, dtype: int64</p><br> <p>In [47]: df['F'] = s1

1
2
3
4
5
6
7
8
9
10
11
12
13
In [ 45 ] : s1 = pd . Series ( [ 1 , 2 , 3 , 4 , 5 , 6 ] , index = pd . date_range ( '20130102' , periods = 6 ) )
In [ 46 ] : s1
Out [ 46 ] :
2013 - 01 - 02 1
2013 - 01 - 03 2
2013 - 01 - 04 3
2013 - 01 - 05 4
2013 - 01 - 06 5
2013 - 01 - 07 6
Freq : D , dtype : int64
In [ 47 ] : df [ 'F' ] = s1

通过标签设置值

 

In [48]: df.at[dates[0],'A'] = 0
1
In [ 48 ] : df . at [ dates [ 0 ] , 'A' ] = 0

按位置设置值

 

In [49]: df.iat[0,1] = 0
1
In [ 49 ] : df . iat [ 0 , 1 ] = 0

通过分配一个 numpy 数组进行设置

 

In [50]: df.loc[:,'D'] = np.array([5] * len(df))
1
In [ 50 ] : df . loc [ : , 'D' ] = np . array ( [ 5 ] * len ( df ) )

事先设置操作的结果

 

In [51]: df<br /><br> Out[51]:<br /><br> A B C D F<br /><br> 2013-01-01 0.000000 0.000000 -1.509059 5 NaN<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 5 1.0<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0<br /><br> 2013-01-05 -0.424972 0.567020 0.276232 5 4.0<br /><br> 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
1
2
3
4
5
6
7
8
9
In [ 51 ] : df
Out [ 51 ] :
A B C D F
2013 - 01 - 01 0.000000 0.000000 - 1.509059 5 NaN
2013 - 01 - 02 1.212112 - 0.173215 0.119209 5 1.0
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 5 2.0
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 5 3.0
2013 - 01 - 05 - 0.424972 0.567020 0.276232 5 4.0
2013 - 01 - 06 - 0.673690 0.113648 - 1.478427 5 5.0

一个 where 操作与设置。

缺失数据

熊猫主要使用值 np.nan 来表示缺失的数据。这是默认情况下不包括在计算中。查看缺失数据(http://pandas.pydata.org/pandas-docs/stable/missing_data.html#missing-data)
Reindexing 允许您更改/添加/删除指定轴上的索引。这将返回数据的副本。

 

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])</p><br> <p>In [56]: df1.loc[dates[0]:dates[1],'E'] = 1</p><br> <p>In [57]: df1<br /><br> Out[57]:<br /><br> A B C D F E<br /><br> 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

1
2
3
4
5
6
7
8
9
10
11
In [ 55 ] : df1 = df . reindex ( index = dates [ 0 : 4 ] , columns = list ( df . columns ) + [ 'E' ] )
In [ 56 ] : df1 . loc [ dates [ 0 ] : dates [ 1 ] , 'E' ] = 1
In [ 57 ] : df1
Out [ 57 ] :
A B C D F E
2013 - 01 - 01 0.000000 0.000000 - 1.509059 5 NaN 1.0
2013 - 01 - 02 1.212112 - 0.173215 0.119209 5 1.0 1.0
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 5 2.0 NaN
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 5 3.0 NaN

删除任何缺少数据的行。

 

In [58]: df1.dropna(how='any')<br /><br> Out[58]:<br /><br> A B C D F E<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
1
2
3
4
In [ 58 ] : df1 . dropna ( how = 'any' )
Out [ 58 ] :
A B C D F E
2013 - 01 - 02 1.212112 - 0.173215 0.119209 5 1.0 1.0

填写缺少的数据

 

In [59]: df1.fillna(value=5)<br /><br> Out[59]:<br /><br> A B C D F E<br /><br> 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0<br /><br> 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0<br /><br> 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0<br /><br> 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
1
2
3
4
5
6
7
In [ 59 ] : df1 . fillna ( value = 5 )
Out [ 59 ] :
A B C D F E
2013 - 01 - 01 0.000000 0.000000 - 1.509059 5 5.0 1.0
2013 - 01 - 02 1.212112 - 0.173215 0.119209 5 1.0 1.0
2013 - 01 - 03 - 0.861849 - 2.104569 - 0.494929 5 2.0 5.0
2013 - 01 - 04 0.721555 - 0.706771 - 1.039575 5 3.0 5.0

获取值为 nan 的布尔值

 

In [60]: pd.isna(df1)<br /><br> Out[60]:<br /><br> A B C D F E<br /><br> 2013-01-01 False False False False True False<br /><br> 2013-01-02 False False False False False False<br /><br> 2013-01-03 False False False False False True<br /><br> 2013-01-04 False False False False False True
1
2
3
4
5
6
7
In [ 60 ] : pd . isna ( df1 )
Out [ 60 ] :
A B C D F E
2013 - 01 - 01 False False False False True False
2013 - 01 - 02 False False False False False False
2013 - 01 - 03 False False False False False True
2013 - 01 - 04 False False False False False True

操作

请参阅 Basic p on Binary Ops(http://pandas.pydata.org/pandas-docs/stable/basics.html#basics-binop)

统计

一般操作不包括丢失的数据。
执行描述性统计

 

In [61]: df.mean()<br /><br> Out[61]:<br /><br> A -0.004474<br /><br> B -0.383981<br /><br> C -0.687758<br /><br> D 5.000000<br /><br> F 3.000000<br /><br> dtype: float64
1
2
3
4
5
6
7
8
In [ 61 ] : df . mean ( )
Out [ 61 ] :
A - 0.004474
B - 0.383981
C - 0.687758
D 5.000000
F 3.000000
dtype : float64

相同的操作在另一个轴上

 

In [62]: df.mean(1)<br /><br> Out[62]:<br /><br> 2013-01-01 0.872735<br /><br> 2013-01-02 1.431621<br /><br> 2013-01-03 0.707731<br /><br> 2013-01-04 1.395042<br /><br> 2013-01-05 1.883656<br /><br> 2013-01-06 1.592306<br /><br> Freq: D, dtype: float64
1
2
3
4
5
6
7
8
9
In [ 62 ] : df . mean ( 1 )
Out [ 62 ] :
2013 - 01 - 01 0.872735
2013 - 01 - 02 1.431621
2013 - 01 - 03 0.707731
2013 - 01 - 04 1.395042
2013 - 01 - 05 1.883656
2013 - 01 - 06 1.592306
Freq : D , dtype : float64

使用具有不同维度和需要对齐的对象进行操作。另外,大熊猫会沿指定的尺寸自动变化。

 

In [63]: s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)</p><br> <p>In [64]: s<br /><br> Out[64]:<br /><br> 2013-01-01 NaN<br /><br> 2013-01-02 NaN<br /><br> 2013-01-03 1.0<br /><br> 2013-01-04 3.0<br /><br> 2013-01-05 5.0<br /><br> 2013-01-06 NaN<br /><br> Freq: D, dtype: float64</p><br> <p>In [65]: df.sub(s, axis='index')<br /><br> Out[65]:<br /><br> A B C D F<br /><br> 2013-01-01 NaN NaN NaN NaN NaN<br /><br> 2013-01-02 NaN NaN NaN NaN NaN<br /><br> 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0<br /><br> 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0<br /><br> 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0<br /><br> 2013-01-06 NaN NaN NaN NaN NaN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [ 63 ] : s = pd . Series ( [ 1 , 3 , 5 , np . nan , 6 , 8 ] , index = dates ) . shift ( 2 )
In [ 64 ] : s
Out [ 64 ] :
2013 - 01 - 01 NaN
2013 - 01 - 02 NaN
2013 - 01 - 03 1.0
2013 - 01 - 04 3.0
2013 - 01 - 05 5.0
2013 - 01 - 06 NaN
Freq : D , dtype : float64
In [ 65 ] : df . sub ( s , axis = 'index' )
Out [ 65 ] :
A B C D F
2013 - 01 - 01 NaN NaN NaN NaN NaN
2013 - 01 - 02 NaN NaN NaN NaN NaN
2013 - 01 - 03 - 1.861849 - 3.104569 - 1.494929 4.0 1.0
2013 - 01 - 04 - 2.278445 - 3.706771 - 4.039575 2.0 0.0
2013 - 01 - 05 - 5.424972 - 4.432980 - 4.723768 0.0 - 1.0
2013 - 01 - 06 NaN NaN NaN NaN NaN

应用(apply)

将函数应用于数据

 

In [66]: df.apply(np.cumsum)<br /><br> Out[66]:<br /><br> A B C D F<br /><br> 2013-01-01 0.000000 0.000000 -1.509059 5 NaN<br /><br> 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0<br /><br> 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0<br /><br> 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0<br /><br> 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0<br /><br> 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0</p><br> <p>In [67]: df.apply(lambda x: x.max() - x.min())<br /><br> Out[67]:<br /><br> A 2.073961<br /><br> B 2.671590<br /><br> C 1.785291<br /><br> D 0.000000<br /><br> F 4.000000<br /><br> dtype: float64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
In [ 66 ] : df . apply ( np . cumsum )
Out [ 66 ] :
A B C D F
2013 - 01 - 01 0.000000 0.000000 - 1.509059 5 NaN
2013 - 01 - 02 1.212112 - 0.173215 - 1.389850 10 1.0
2013 - 01 - 03 0.350263 - 2.277784 - 1.884779 15 3.0
2013 - 01 - 04 1.071818 - 2.984555 - 2.924354 20 6.0
2013 - 01 - 05 0.646846 - 2.417535 - 2.648122 25 10.0
2013 - 01 - 06 - 0.026844 - 2.303886 - 4.126549 30 15.0
In [ 67 ] : df . apply ( lambda x : x . max ( ) - x . min ( ) )
Out [ 67 ] :
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype : float64

直方图化(Histogramming)

请参阅 Histogramming and Discretization(http://pandas.pydata.org/pandas-docs/stable/basics.html#basics-discretization)

 

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))</p><br> <p>In [69]: s<br /><br> Out[69]:<br /><br> 0 4<br /><br> 1 2<br /><br> 2 1<br /><br> 3 2<br /><br> 4 6<br /><br> 5 4<br /><br> 6 4<br /><br> 7 6<br /><br> 8 4<br /><br> 9 4<br /><br> dtype: int64</p><br> <p>In [70]: s.value_counts()<br /><br> Out[70]:<br /><br> 4 5<br /><br> 6 2<br /><br> 2 2<br /><br> 1 1<br /><br> dtype: int64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [ 68 ] : s = pd . Series ( np . random . randint ( 0 , 7 , size = 10 ) )
In [ 69 ] : s
Out [ 69 ] :
0 4
1 2
2 1
3 2
4 6
5 4
6 4
7 6
8 4
9 4
dtype : int64
In [ 70 ] : s . value_counts ( )
Out [ 70 ] :
4 5
6 2
2 2
1 1
dtype : int64

字符串方法

Series 在 str 属性中配备了一组字符串处理方法,使得在数组的每个元素上操作都变得很容易,如下面的代码片段所示。请注意,str中的模式匹配通常默认使用正则表达式(在某些情况下始终使用它们)。在矢量化字符串方法(http://pandas.pydata.org/pandas-docs/stable/text.html#text-string-methods)中查看更多。

 

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])</p><br> <p>In [72]: s.str.lower()<br /><br> Out[72]:<br /><br> 0 a<br /><br> 1 b<br /><br> 2 c<br /><br> 3 aaba<br /><br> 4 baca<br /><br> 5 NaN<br /><br> 6 caba<br /><br> 7 dog<br /><br> 8 cat<br /><br> dtype: object

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [ 71 ] : s = pd . Series ( [ 'A' , 'B' , 'C' , 'Aaba' , 'Baca' , np . nan , 'CABA' , 'dog' , 'cat' ] )
In [ 72 ] : s . str . lower ( )
Out [ 72 ] :
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype : object

合并

Concat

在连接/合并类型操作的情况下,熊猫提供了各种功能,可以方便地将 Series,DataFrame 和 Panel 对象与索引和关系代数功能的各种设置逻辑组合在一起。
请参阅合并部分(http://pandas.pydata.org/pandas-docs/stable/merging.html#merging)
连接 pandas 对象和 concat():

 

In [73]: df = pd.DataFrame(np.random.randn(10, 4))</p><br> <p>In [74]: df<br /><br> Out[74]:<br /><br> 0 1 2 3<br /><br> 0 -0.548702 1.467327 -1.015962 -0.483075<br /><br> 1 1.637550 -1.217659 -0.291519 -1.745505<br /><br> 2 -0.263952 0.991460 -0.919069 0.266046<br /><br> 3 -0.709661 1.669052 1.037882 -1.705775<br /><br> 4 -0.919854 -0.042379 1.247642 -0.009920<br /><br> 5 0.290213 0.495767 0.362949 1.548106<br /><br> 6 -1.131345 -0.089329 0.337863 -0.945867<br /><br> 7 -0.932132 1.956030 0.017587 -0.016692<br /><br> 8 -0.575247 0.254161 -1.143704 0.215897<br /><br> 9 1.193555 -0.077118 -0.408530 -0.862495</p><br> <p># break it into pieces<br /><br> In [75]: pieces = [df[:3], df[3:7], df[7:]]</p><br> <p>In [76]: pd.concat(pieces)<br /><br> Out[76]:<br /><br> 0 1 2 3<br /><br> 0 -0.548702 1.467327 -1.015962 -0.483075<br /><br> 1 1.637550 -1.217659 -0.291519 -1.745505<br /><br> 2 -0.263952 0.991460 -0.919069 0.266046<br /><br> 3 -0.709661 1.669052 1.037882 -1.705775<br /><br> 4 -0.919854 -0.042379 1.247642 -0.009920<br /><br> 5 0.290213 0.495767 0.362949 1.548106<br /><br> 6 -1.131345 -0.089329 0.337863 -0.945867<br /><br> 7 -0.932132 1.956030 0.017587 -0.016692<br /><br> 8 -0.575247 0.254161 -1.143704 0.215897<br /><br> 9 1.193555 -0.077118 -0.408530 -0.862495

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
In [ 73 ] : df = pd . DataFrame ( np . random . randn ( 10 , 4 ) )
In [ 74 ] : df
Out [ 74 ] :
0 1 2 3
0 - 0.548702 1.467327 - 1.015962 - 0.483075
1 1.637550 - 1.217659 - 0.291519 - 1.745505
2 - 0.263952 0.991460 - 0.919069 0.266046
3 - 0.709661 1.669052 1.037882 - 1.705775
4 - 0.919854 - 0.042379 1.247642 - 0.009920
5 0.290213 0.495767 0.362949 1.548106
6 - 1.131345 - 0.089329 0.337863 - 0.945867
7 - 0.932132 1.956030 0.017587 - 0.016692
8 - 0.575247 0.254161 - 1.143704 0.215897
9 1.193555 - 0.077118 - 0.408530 - 0.862495
# break it into pieces
In [ 75 ] : pieces = [ df [ : 3 ] , df [ 3 : 7 ] , df [ 7 : ] ]
In [ 76 ] : pd . concat ( pieces )
Out [ 76 ] :
0 1 2 3
0 - 0.548702 1.467327 - 1.015962 - 0.483075
1 1.637550 - 1.217659 - 0.291519 - 1.745505
2 - 0.263952 0.991460 - 0.919069 0.266046
3 - 0.709661 1.669052 1.037882 - 1.705775
4 - 0.919854 - 0.042379 1.247642 - 0.009920
5 0.290213 0.495767 0.362949 1.548106
6 - 1.131345 - 0.089329 0.337863 - 0.945867
7 - 0.932132 1.956030 0.017587 - 0.016692
8 - 0.575247 0.254161 - 1.143704 0.215897
9 1.193555 - 0.077118 - 0.408530 - 0.862495

Join

SQL 风格合并。请参阅数据库样式的 joining

 

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})</p><br> <p>In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})</p><br> <p>In [79]: left<br /><br> Out[79]:<br /><br> key lval<br /><br> 0 foo 1<br /><br> 1 foo 2</p><br> <p>In [80]: right<br /><br> Out[80]:<br /><br> key rval<br /><br> 0 foo 4<br /><br> 1 foo 5</p><br> <p>In [81]: pd.merge(left, right, on='key')<br /><br> Out[81]:<br /><br> key lval rval<br /><br> 0 foo 1 4<br /><br> 1 foo 1 5<br /><br> 2 foo 2 4<br /><br> 3 foo 2 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [ 77 ] : left = pd . DataFrame ( { 'key' : [ 'foo' , 'foo' ] , 'lval' : [ 1 , 2 ] } )
In [ 78 ] : right = pd . DataFrame ( { 'key' : [ 'foo' , 'foo' ] , 'rval' : [ 4 , 5 ] } )
In [ 79 ] : left
Out [ 79 ] :
key lval
0 foo 1
1 foo 2
In [ 80 ] : right
Out [ 80 ] :
key rval
0 foo 4
1 foo 5
In [ 81 ] : pd . merge ( left , right , on = 'key' )
Out [ 81 ] :
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

另一个可以给出的例子是:

 

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})</p><br> <p>In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})</p><br> <p>In [84]: left<br /><br> Out[84]:<br /><br> key lval<br /><br> 0 foo 1<br /><br> 1 bar 2</p><br> <p>In [85]: right<br /><br> Out[85]:<br /><br> key rval<br /><br> 0 foo 4<br /><br> 1 bar 5</p><br> <p>In [86]: pd.merge(left, right, on='key')<br /><br> Out[86]:<br /><br> key lval rval<br /><br> 0 foo 1 4<br /><br> 1 bar 2 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [ 82 ] : left = pd . DataFrame ( { 'key' : [ 'foo' , 'bar' ] , 'lval' : [ 1 , 2 ] } )
In [ 83 ] : right = pd . DataFrame ( { 'key' : [ 'foo' , 'bar' ] , 'rval' : [ 4 , 5 ] } )
In [ 84 ] : left
Out [ 84 ] :
key lval
0 foo 1
1 bar 2
In [ 85 ] : right
Out [ 85 ] :
key rval
0 foo 4
1 bar 5
In [ 86 ] : pd . merge ( left , right , on = 'key' )
Out [ 86 ] :
key lval rval
0 foo 1 4
1 bar 2 5

Append

将行附加到数据框。见 Appending

 

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])</p><br> <p>In [88]: df<br /><br> Out[88]:<br /><br> A B C D<br /><br> 0 1.346061 1.511763 1.627081 -0.990582<br /><br> 1 -0.441652 1.211526 0.268520 0.024580<br /><br> 2 -1.577585 0.396823 -0.105381 -0.532532<br /><br> 3 1.453749 1.208843 -0.080952 -0.264610<br /><br> 4 -0.727965 -0.589346 0.339969 -0.693205<br /><br> 5 -0.339355 0.593616 0.884345 1.591431<br /><br> 6 0.141809 0.220390 0.435589 0.192451<br /><br> 7 -0.096701 0.803351 1.715071 -0.708758</p><br> <p>In [89]: s = df.iloc[3]</p><br> <p>In [90]: df.append(s, ignore_index=True)<br /><br> Out[90]:<br /><br> A B C D<br /><br> 0 1.346061 1.511763 1.627081 -0.990582<br /><br> 1 -0.441652 1.211526 0.268520 0.024580<br /><br> 2 -1.577585 0.396823 -0.105381 -0.532532<br /><br> 3 1.453749 1.208843 -0.080952 -0.264610<br /><br> 4 -0.727965 -0.589346 0.339969 -0.693205<br /><br> 5 -0.339355 0.593616 0.884345 1.591431<br /><br> 6 0.141809 0.220390 0.435589 0.192451<br /><br> 7 -0.096701 0.803351 1.715071 -0.708758<br /><br> 8 1.453749 1.208843 -0.080952 -0.264610

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
In [ 87 ] : df = pd . DataFrame ( np . random . randn ( 8 , 4 ) , columns = [ 'A' , 'B' , 'C' , 'D' ] )
In [ 88 ] : df
Out [ 88 ] :
A B C D
0 1.346061 1.511763 1.627081 - 0.990582
1 - 0.441652 1.211526 0.268520 0.024580
2 - 1.577585 0.396823 - 0.105381 - 0.532532
3 1.453749 1.208843 - 0.080952 - 0.264610
4 - 0.727965 - 0.589346 0.339969 - 0.693205
5 - 0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 - 0.096701 0.803351 1.715071 - 0.708758
In [ 89 ] : s = df . iloc [ 3 ]
In [ 90 ] : df . append ( s , ignore_index = True )
Out [ 90 ] :
A B C D
0 1.346061 1.511763 1.627081 - 0.990582
1 - 0.441652 1.211526 0.268520 0.024580
2 - 1.577585 0.396823 - 0.105381 - 0.532532
3 1.453749 1.208843 - 0.080952 - 0.264610
4 - 0.727965 - 0.589346 0.339969 - 0.693205
5 - 0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 - 0.096701 0.803351 1.715071 - 0.708758
8 1.453749 1.208843 - 0.080952 - 0.264610

分类

通过 “group by”,我们指的是涉及一个或多个以下步骤的过程

  • Splitting 根据一些标准将数据分组
  • Applying 根据一些标准将数据分组
  • Combining 将结果组合成一个数据结构

请参阅分组部分(http://pandas.pydata.org/pandas-docs/stable/groupby.html#groupby)

 

In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',<br /><br> ....: 'foo', 'bar', 'foo', 'foo'],<br /><br> ....: 'B' : ['one', 'one', 'two', 'three',<br /><br> ....: 'two', 'two', 'one', 'three'],<br /><br> ....: 'C' : np.random.randn(8),<br /><br> ....: 'D' : np.random.randn(8)})<br /><br> ....:</p><br> <p>In [92]: df<br /><br> Out[92]:<br /><br> A B C D<br /><br> 0 foo one -1.202872 -0.055224<br /><br> 1 bar one -1.814470 2.395985<br /><br> 2 foo two 1.018601 1.552825<br /><br> 3 bar three -0.595447 0.166599<br /><br> 4 foo two 1.395433 0.047609<br /><br> 5 bar two -0.392670 -0.136473<br /><br> 6 foo one 0.007207 -0.561757<br /><br> 7 foo three 1.928123 -1.623033
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [ 91 ] : df = pd . DataFrame ( { 'A' : [ 'foo' , 'bar' , 'foo' , 'bar' ,
. . . . : 'foo' , 'bar' , 'foo' , 'foo' ] ,
. . . . : 'B' : [ 'one' , 'one' , 'two' , 'three' ,
. . . . : 'two' , 'two' , 'one' , 'three' ] ,
. . . . : 'C' : np . random . randn ( 8 ) ,
. . . . : 'D' : np . random . randn ( 8 ) } )
. . . . :
In [ 92 ] : df
Out [ 92 ] :
A B C D
0 foo one - 1.202872 - 0.055224
1 bar one - 1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three - 0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two - 0.392670 - 0.136473
6 foo one 0.007207 - 0.561757
7 foo three 1.928123 - 1.623033

分组,然后将函数总和应用于结果组。

 

In [93]: df.groupby('A').sum()<br /><br> Out[93]:<br /><br> C D<br /><br> A<br /><br> bar -2.802588 2.42611<br /><br> foo 3.146492 -0.63958
1
2
3
4
5
6
In [ 93 ] : df . groupby ( 'A' ) . sum ( )
Out [ 93 ] :
C D
A
bar - 2.802588 2.42611
foo 3.146492 - 0.63958

按多列分组会形成一个分层索引,然后我们应用这个函数。

 

In [94]: df.groupby(['A','B']).sum()<br /><br> Out[94]:<br /><br> C D<br /><br> A B<br /><br> bar one -1.814470 2.395985<br /><br> three -0.595447 0.166599<br /><br> two -0.392670 -0.136473<br /><br> foo one -1.195665 -0.616981<br /><br> three 1.928123 -1.623033<br /><br> two 2.414034 1.600434
1
2
3
4
5
6
7
8
9
10
In [ 94 ] : df . groupby ( [ 'A' , 'B' ] ) . sum ( )
Out [ 94 ] :
C D
A B
bar one - 1.814470 2.395985
three - 0.595447 0.166599
two - 0.392670 - 0.136473
foo one - 1.195665 - 0.616981
three 1.928123 - 1.623033
two 2.414034 1.600434

重塑

请参阅分层索引(http://pandas.pydata.org/pandas-docs/stable/advanced.html#advanced-hierarchical)和重塑(http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-stacking)的章节。

堆(Stack)

 

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',<br /><br> ....: 'foo', 'foo', 'qux', 'qux'],<br /><br> ....: ['one', 'two', 'one', 'two',<br /><br> ....: 'one', 'two', 'one', 'two']]))<br /><br> ....:</p><br> <p>In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])</p><br> <p>In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])</p><br> <p>In [98]: df2 = df[:4]</p><br> <p>In [99]: df2<br /><br> Out[99]:<br /><br> A B<br /><br> first second<br /><br> bar one 0.029399 -0.542108<br /><br> two 0.282696 -0.087302<br /><br> baz one -1.575170 1.771208<br /><br> two 0.816482 1.100230
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [ 95 ] : tuples = list ( zip ( * [ [ 'bar' , 'bar' , 'baz' , 'baz' ,
. . . . : 'foo' , 'foo' , 'qux' , 'qux' ] ,
. . . . : [ 'one' , 'two' , 'one' , 'two' ,
. . . . : 'one' , 'two' , 'one' , 'two' ] ] ) )
. . . . :
In [ 96 ] : index = pd . MultiIndex . from_tuples ( tuples , names = [ 'first' , 'second' ] )
In [ 97 ] : df = pd . DataFrame ( np . random . randn ( 8 , 2 ) , index = index , columns = [ 'A' , 'B' ] )
In [ 98 ] : df2 = df [ : 4 ]
In [ 99 ] : df2
Out [ 99 ] :
A B
first second
bar one 0.029399 - 0.542108
two 0.282696 - 0.087302
baz one - 1.575170 1.771208
two 0.816482 1.100230

stack()方法“压缩” DataFrame 列中的级别。

 

In [100]: stacked = df2.stack()</p><br> <p>In [101]: stacked<br /><br> Out[101]:<br /><br> first second<br /><br> bar one A 0.029399<br /><br> B -0.542108<br /><br> two A 0.282696<br /><br> B -0.087302<br /><br> baz one A -1.575170<br /><br> B 1.771208<br /><br> two A 0.816482<br /><br> B 1.100230<br /><br> dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [ 100 ] : stacked = df2 . stack ( )
In [ 101 ] : stacked
Out [ 101 ] :
first second
bar one A 0.029399
B - 0.542108
two A 0.282696
B - 0.087302
baz one A - 1.575170
B 1.771208
two A 0.816482
B 1.100230
dtype : float64

对于“堆叠的” DataFrame 或 Series(以MultiIndex为索引),stack()的逆操作是 unstack(),默认情况下,它将卸载最后一层:

 

In [102]: stacked.unstack()<br /><br> Out[102]:<br /><br> A B<br /><br> first second<br /><br> bar one 0.029399 -0.542108<br /><br> two 0.282696 -0.087302<br /><br> baz one -1.575170 1.771208<br /><br> two 0.816482 1.100230</p><br> <p>In [103]: stacked.unstack(1)<br /><br> Out[103]:<br /><br> second one two<br /><br> first<br /><br> bar A 0.029399 0.282696<br /><br> B -0.542108 -0.087302<br /><br> baz A -1.575170 0.816482<br /><br> B 1.771208 1.100230</p><br> <p>In [104]: stacked.unstack(0)<br /><br> Out[104]:<br /><br> first bar baz<br /><br> second<br /><br> one A 0.029399 -1.575170<br /><br> B -0.542108 1.771208<br /><br> two A 0.282696 0.816482<br /><br> B -0.087302 1.100230
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
In [ 102 ] : stacked . unstack ( )
Out [ 102 ] :
A B
first second
bar one 0.029399 - 0.542108
two 0.282696 - 0.087302
baz one - 1.575170 1.771208
two 0.816482 1.100230
In [ 103 ] : stacked . unstack ( 1 )
Out [ 103 ] :
second one two
first
bar A 0.029399 0.282696
B - 0.542108 - 0.087302
baz A - 1.575170 0.816482
B 1.771208 1.100230
In [ 104 ] : stacked . unstack ( 0 )
Out [ 104 ] :
first bar baz
second
one A 0.029399 - 1.575170
B - 0.542108 1.771208
two A 0.282696 0.816482
B - 0.087302 1.100230

数据透视表

请参阅数据透视表(http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-pivot)

 

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,<br /><br> .....: 'B' : ['A', 'B', 'C'] * 4,<br /><br> .....: 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,<br /><br> .....: 'D' : np.random.randn(12),<br /><br> .....: 'E' : np.random.randn(12)})<br /><br> .....:</p><br> <p>In [106]: df<br /><br> Out[106]:<br /><br> A B C D E<br /><br> 0 one A foo 1.418757 -0.179666<br /><br> 1 one B foo -1.879024 1.291836<br /><br> 2 two C foo 0.536826 -0.009614<br /><br> 3 three A bar 1.006160 0.392149<br /><br> 4 one B bar -0.029716 0.264599<br /><br> 5 one C bar -1.146178 -0.057409<br /><br> 6 two A foo 0.100900 -1.425638<br /><br> 7 three B foo -1.035018 1.024098<br /><br> 8 one C foo 0.314665 -0.106062<br /><br> 9 one A bar -0.773723 1.824375<br /><br> 10 two B bar -1.170653 0.595974<br /><br> 11 three C bar 0.648740 1.167115
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
In [ 105 ] : df = pd . DataFrame ( { 'A' : [ 'one' , 'one' , 'two' , 'three' ] * 3 ,
. . . . . : 'B' : [ 'A' , 'B' , 'C' ] * 4 ,
. . . . . : 'C' : [ 'foo' , 'foo' , 'foo' , 'bar' , 'bar' , 'bar' ] * 2 ,
. . . . . : 'D' : np . random . randn ( 12 ) ,
. . . . . : 'E' : np . random . randn ( 12 ) } )
. . . . . :
In [ 106 ] : df
Out [ 106 ] :
A B C D E
0 one A foo 1.418757 - 0.179666
1 one B foo - 1.879024 1.291836
2 two C foo 0.536826 - 0.009614
3 three A bar 1.006160 0.392149
4 one B bar - 0.029716 0.264599
5 one C bar - 1.146178 - 0.057409
6 two A foo 0.100900 - 1.425638
7 three B foo - 1.035018 1.024098
8 one C foo 0.314665 - 0.106062
9 one A bar - 0.773723 1.824375
10 two B bar - 1.170653 0.595974
11 three C bar 0.648740 1.167115

我们可以很容易地从这些数据生成数据透视表:

 

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])<br /><br> Out[107]:<br /><br> C bar foo<br /><br> A B<br /><br> one A -0.773723 1.418757<br /><br> B -0.029716 -1.879024<br /><br> C -1.146178 0.314665<br /><br> three A 1.006160 NaN<br /><br> B NaN -1.035018<br /><br> C 0.648740 NaN<br /><br> two A NaN 0.100900<br /><br> B -1.170653 NaN<br /><br> C NaN 0.536826
1
2
3
4
5
6
7
8
9
10
11
12
13
In [ 107 ] : pd . pivot_table ( df , values = 'D' , index = [ 'A' , 'B' ] , columns = [ 'C' ] )
Out [ 107 ] :
C bar foo
A B
one A - 0.773723 1.418757
B - 0.029716 - 1.879024
C - 1.146178 0.314665
three A 1.006160 NaN
B NaN - 1.035018
C 0.648740 NaN
two A NaN 0.100900
B - 1.170653 NaN
C NaN 0.536826

时间序列

熊猫具有用于在频率转换期间执行重采样操作(例如,其次将数据转换为5分钟数据)的简单,强大且高效的功能。这在金融应用中非常普遍,但不限于此。请参阅时间系列(http://pandas.pydata.org/pandas-docs/stable/timeseries.html#timeseries)

 

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')</p><br> <p>In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)</p><br> <p>In [110]: ts.resample('5Min').sum()<br /><br> Out[110]:<br /><br> 2012-01-01 25083<br /><br> Freq: 5T, dtype: int64

1
2
3
4
5
6
7
8
In [ 108 ] : rng = pd . date_range ( '1/1/2012' , periods = 100 , freq = 'S' )
In [ 109 ] : ts = pd . Series ( np . random . randint ( 0 , 500 , len ( rng ) ) , index = rng )
In [ 110 ] : ts . resample ( '5Min' ) . sum ( )
Out [ 110 ] :
2012 - 01 - 01 25083
Freq : 5T , dtype : int64

时区表示

 

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')</p><br> <p>In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)</p><br> <p>In [113]: ts<br /><br> Out[113]:<br /><br> 2012-03-06 0.464000<br /><br> 2012-03-07 0.227371<br /><br> 2012-03-08 -0.496922<br /><br> 2012-03-09 0.306389<br /><br> 2012-03-10 -2.290613<br /><br> Freq: D, dtype: float64</p><br> <p>In [114]: ts_utc = ts.tz_localize('UTC')</p><br> <p>In [115]: ts_utc<br /><br> Out[115]:<br /><br> 2012-03-06 00:00:00+00:00 0.464000<br /><br> 2012-03-07 00:00:00+00:00 0.227371<br /><br> 2012-03-08 00:00:00+00:00 -0.496922<br /><br> 2012-03-09 00:00:00+00:00 0.306389<br /><br> 2012-03-10 00:00:00+00:00 -2.290613<br /><br> Freq: D, dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [ 111 ] : rng = pd . date_range ( '3/6/2012 00:00' , periods = 5 , freq = 'D' )
In [ 112 ] : ts = pd . Series ( np . random . randn ( len ( rng ) ) , rng )
In [ 113 ] : ts
Out [ 113 ] :
2012 - 03 - 06 0.464000
2012 - 03 - 07 0.227371
2012 - 03 - 08 - 0.496922
2012 - 03 - 09 0.306389
2012 - 03 - 10 - 2.290613
Freq : D , dtype : float64
In [ 114 ] : ts_utc = ts . tz_localize ( 'UTC' )
In [ 115 ] : ts_utc
Out [ 115 ] :
2012 - 03 - 06 00 : 00 : 00 + 00 : 00 0.464000
2012 - 03 - 07 00 : 00 : 00 + 00 : 00 0.227371
2012 - 03 - 08 00 : 00 : 00 + 00 : 00 - 0.496922
2012 - 03 - 09 00 : 00 : 00 + 00 : 00 0.306389
2012 - 03 - 10 00 : 00 : 00 + 00 : 00 - 2.290613
Freq : D , dtype : float64

转换到另一个时区

 

In [116]: ts_utc.tz_convert('US/Eastern')<br /><br> Out[116]:<br /><br> 2012-03-05 19:00:00-05:00 0.464000<br /><br> 2012-03-06 19:00:00-05:00 0.227371<br /><br> 2012-03-07 19:00:00-05:00 -0.496922<br /><br> 2012-03-08 19:00:00-05:00 0.306389<br /><br> 2012-03-09 19:00:00-05:00 -2.290613<br /><br> Freq: D, dtype: float64
1
2
3
4
5
6
7
8
In [ 116 ] : ts_utc . tz_convert ( 'US/Eastern' )
Out [ 116 ] :
2012 - 03 - 05 19 : 00 : 00 - 05 : 00 0.464000
2012 - 03 - 06 19 : 00 : 00 - 05 : 00 0.227371
2012 - 03 - 07 19 : 00 : 00 - 05 : 00 - 0.496922
2012 - 03 - 08 19 : 00 : 00 - 05 : 00 0.306389
2012 - 03 - 09 19 : 00 : 00 - 05 : 00 - 2.290613
Freq : D , dtype : float64

在时间跨度表示之间进行转换

 

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')</p><br> <p>In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)</p><br> <p>In [119]: ts<br /><br> Out[119]:<br /><br> 2012-01-31 -1.134623<br /><br> 2012-02-29 -1.561819<br /><br> 2012-03-31 -0.260838<br /><br> 2012-04-30 0.281957<br /><br> 2012-05-31 1.523962<br /><br> Freq: M, dtype: float64</p><br> <p>In [120]: ps = ts.to_period()</p><br> <p>In [121]: ps<br /><br> Out[121]:<br /><br> 2012-01 -1.134623<br /><br> 2012-02 -1.561819<br /><br> 2012-03 -0.260838<br /><br> 2012-04 0.281957<br /><br> 2012-05 1.523962<br /><br> Freq: M, dtype: float64</p><br> <p>In [122]: ps.to_timestamp()<br /><br> Out[122]:<br /><br> 2012-01-01 -1.134623<br /><br> 2012-02-01 -1.561819<br /><br> 2012-03-01 -0.260838<br /><br> 2012-04-01 0.281957<br /><br> 2012-05-01 1.523962<br /><br> Freq: MS, dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
In [ 117 ] : rng = pd . date_range ( '1/1/2012' , periods = 5 , freq = 'M' )
In [ 118 ] : ts = pd . Series ( np . random . randn ( len ( rng ) ) , index = rng )
In [ 119 ] : ts
Out [ 119 ] :
2012 - 01 - 31 - 1.134623
2012 - 02 - 29 - 1.561819
2012 - 03 - 31 - 0.260838
2012 - 04 - 30 0.281957
2012 - 05 - 31 1.523962
Freq : M , dtype : float64
In [ 120 ] : ps = ts . to_period ( )
In [ 121 ] : ps
Out [ 121 ] :
2012 - 01 - 1.134623
2012 - 02 - 1.561819
2012 - 03 - 0.260838
2012 - 04 0.281957
2012 - 05 1.523962
Freq : M , dtype : float64
In [ 122 ] : ps . to_timestamp ( )
Out [ 122 ] :
2012 - 01 - 01 - 1.134623
2012 - 02 - 01 - 1.561819
2012 - 03 - 01 - 0.260838
2012 - 04 - 01 0.281957
2012 - 05 - 01 1.523962
Freq : MS , dtype : float64

周期和时间戳之间的转换可以使用一些方便的算术功能。在下面的例子中,我们将季度结束时间从11月份转换为季末结束时的上午9点:

 

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')</p><br> <p>In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)</p><br> <p>In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9</p><br> <p>In [126]: ts.head()<br /><br> Out[126]:<br /><br> 1990-03-01 09:00 -0.902937<br /><br> 1990-06-01 09:00 0.068159<br /><br> 1990-09-01 09:00 -0.057873<br /><br> 1990-12-01 09:00 -0.368204<br /><br> 1991-03-01 09:00 -1.144073<br /><br> Freq: H, dtype: float64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [ 123 ] : prng = pd . period_range ( '1990Q1' , '2000Q4' , freq = 'Q-NOV' )
In [ 124 ] : ts = pd . Series ( np . random . randn ( len ( prng ) ) , prng )
In [ 125 ] : ts . index = ( prng . asfreq ( 'M' , 'e' ) + 1 ) . asfreq ( 'H' , 's' ) + 9
In [ 126 ] : ts . head ( )
Out [ 126 ] :
1990 - 03 - 01 09 : 00 - 0.902937
1990 - 06 - 01 09 : 00 0.068159
1990 - 09 - 01 09 : 00 - 0.057873
1990 - 12 - 01 09 : 00 - 0.368204
1991 - 03 - 01 09 : 00 - 1.144073
Freq : H , dtype : float64

分类

熊猫可以在 DataFrame 中包含分类数据。有关完整文档,请参阅分类介绍(http://pandas.pydata.org/pandas-docs/stable/categorical.html#categorical)和 API 文档(http://pandas.pydata.org/pandas-docs/stable/api.html#api-categorical)

 

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
1
In [ 127 ] : df = pd . DataFrame ( { "id" : [ 1 , 2 , 3 , 4 , 5 , 6 ] , "raw_grade" : [ 'a' , 'b' , 'b' , 'a' , 'a' , 'e' ] } )

将原始等级转换为分类数据类型。

 

In [128]: df["grade"] = df["raw_grade"].astype("category")</p><br> <p>In [129]: df["grade"]<br /><br> Out[129]:<br /><br> 0 a<br /><br> 1 b<br /><br> 2 b<br /><br> 3 a<br /><br> 4 a<br /><br> 5 e<br /><br> Name: grade, dtype: category<br /><br> Categories (3, object): [a, b, e]

1
2
3
4
5
6
7
8
9
10
11
12
In [ 128 ] : df [ "grade" ] = df [ "raw_grade" ] . astype ( "category" )
In [ 129 ] : df [ "grade" ]
Out [ 129 ] :
0 a
1 b
2 b
3 a
4 a
5 e
Name : grade , dtype : category
Categories ( 3 , object ) : [ a , b , e ]

将类别重命名为更有意义的名称(指定到 Series.cat.categories 就是!)

 

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
1
In [ 130 ] : df [ "grade" ] . cat . categories = [ "very good" , "good" , "very bad" ]

重新排列类别并同时添加缺少的类别(Series .cat 下的方法默认返回一个新的系列)。

 

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])</p><br> <p>In [132]: df["grade"]<br /><br> Out[132]:<br /><br> 0 very good<br /><br> 1 good<br /><br> 2 good<br /><br> 3 very good<br /><br> 4 very good<br /><br> 5 very bad<br /><br> Name: grade, dtype: category<br /><br> Categories (5, object): [very bad, bad, medium, good, very good]

1
2
3
4
5
6
7
8
9
10
11
12
In [ 131 ] : df [ "grade" ] = df [ "grade" ] . cat . set_categories ( [ "very bad" , "bad" , "medium" , "good" , "very good" ] )
In [ 132 ] : df [ "grade" ]
Out [ 132 ] :
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name : grade , dtype : category
Categories ( 5 , object ) : [ very bad , bad , medium , good , very good ]

排序是按类别排序的,而不是词汇顺序。

 

In [133]: df.sort_values(by="grade")<br /><br> Out[133]:<br /><br> id raw_grade grade<br /><br> 5 6 e very bad<br /><br> 1 2 b good<br /><br> 2 3 b good<br /><br> 0 1 a very good<br /><br> 3 4 a very good<br /><br> 4 5 a very good
1
2
3
4
5
6
7
8
9
In [ 133 ] : df . sort_values ( by = "grade" )
Out [ 133 ] :
id raw_grade grade
5 6 e very bad
1 2 b good
2 3 b good
0 1 a very good
3 4 a very good
4 5 a very good

按分类列分组也显示空白类别。

 

In [134]: df.groupby("grade").size()<br /><br> Out[134]:<br /><br> grade<br /><br> very bad 1<br /><br> bad 0<br /><br> medium 0<br /><br> good 2<br /><br> very good 3<br /><br> dtype: int64
1
2
3
4
5
6
7
8
9
In [ 134 ] : df . groupby ( "grade" ) . size ( )
Out [ 134 ] :
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype : int64

绘制(Plotting)

绘制文档(http://pandas.pydata.org/pandas-docs/stable/visualization.html#visualization)

 

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))</p><br> <p>In [136]: ts = ts.cumsum()</p><br> <p>In [137]: ts.plot()<br /><br> Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1122ad630>

1
2
3
4
5
6
In [ 135 ] : ts = pd . Series ( np . random . randn ( 1000 ) , index = pd . date_range ( '1/1/2000' , periods = 1000 ) )
In [ 136 ] : ts = ts . cumsum ( )
In [ 137 ] : ts . plot ( )
Out [ 137 ] : < matplotlib . axes . _subplots . AxesSubplot at 0x1122ad630 >

在 DataFrame 上,plot()方便绘制所有带标签的列:

 

 

In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,<br /><br> .....: columns=['A', 'B', 'C', 'D'])<br /><br> .....:</p><br> <p>In [139]: df = df.cumsum()</p><br> <p>In [140]: plt.figure(); df.plot(); plt.legend(loc='best')<br /><br> Out[140]: <matplotlib.legend.Legend at 0x115033cf8>
1
2
3
4
5
6
7
8
In [ 138 ] : df = pd . DataFrame ( np . random . randn ( 1000 , 4 ) , index = ts . index ,
. . . . . : columns = [ 'A' , 'B' , 'C' , 'D' ] )
. . . . . :
In [ 139 ] : df = df . cumsum ( )
In [ 140 ] : plt . figure ( ) ; df . plot ( ) ; plt . legend ( loc = 'best' )
Out [ 140 ] : < matplotlib . legend . Legend at 0x115033cf8 >

数据输入/输出

CSV

写入一个CSV文件(http://pandas.pydata.org/pandas-docs/stable/io.html#io-store-in-csv)

 

In [141]: df.to_csv('foo.csv')
1
In [ 141 ] : df . to_csv ( 'foo.csv' )

从 csv 文件读取(http://pandas.pydata.org/pandas-docs/stable/io.html#io-read-csv-table)

 

In [142]: pd.read_csv('foo.csv')<br /><br> Out[142]:<br /><br> Unnamed: 0 A B C D<br /><br> 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860<br /><br> 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953<br /><br> 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536<br /><br> 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896<br /><br> 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202<br /><br> 5 2000-01-06 0.478344 0.449933 -0.741620 -1.962409<br /><br> 6 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753<br /><br> .. ... ... ... ... ...<br /><br> 993 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940<br /><br> 994 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107<br /><br> 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740<br /><br> 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439<br /><br> 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593<br /><br> 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560<br /><br> 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368</p><br> <p>[1000 rows x 5 columns]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [ 142 ] : pd . read_csv ( 'foo.csv' )
Out [ 142 ] :
Unnamed : 0 A B C D
0 2000 - 01 - 01 0.266457 - 0.399641 - 0.219582 1.186860
1 2000 - 01 - 02 - 1.170732 - 0.345873 1.653061 - 0.282953
2 2000 - 01 - 03 - 1.734933 0.530468 2.060811 - 0.515536
3 2000 - 01 - 04 - 1.555121 1.452620 0.239859 - 1.156896
4 2000 - 01 - 05 0.578117 0.511371 0.103552 - 2.428202
5 2000 - 01 - 06 0.478344 0.449933 - 0.741620 - 1.962409
6 2000 - 01 - 07 1.235339 - 0.091757 - 1.543861 - 1.084753
. . . . . . . . . . . . . . . . .
993 2002 - 09 - 20 - 10.628548 - 9.153563 - 7.883146 28.313940
994 2002 - 09 - 21 - 10.390377 - 8.727491 - 6.399645 30.914107
995 2002 - 09 - 22 - 8.985362 - 8.485624 - 4.669462 31.367740
996 2002 - 09 - 23 - 9.558560 - 8.781216 - 4.499815 30.518439
997 2002 - 09 - 24 - 9.902058 - 9.340490 - 4.386639 30.105593
998 2002 - 09 - 25 - 10.216020 - 9.480682 - 3.933802 29.758560
999 2002 - 09 - 26 - 11.856774 - 10.671012 - 3.216025 29.369368
[ 1000 rows x 5 columns ]

HDF5

读写 HDFStore:http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5
写入 HDF5

 

In [143]: df.to_hdf('foo.h5','df')
1
In [ 143 ] : df . to_hdf ( 'foo.h5' , 'df' )

读取 HDF5

 

In [144]: pd.read_hdf('foo.h5','df')<br /><br> Out[144]:<br /><br> A B C D<br /><br> 2000-01-01 0.266457 -0.399641 -0.219582 1.186860<br /><br> 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953<br /><br> 2000-01-03 -1.734933 0.530468 2.060811 -0.515536<br /><br> 2000-01-04 -1.555121 1.452620 0.239859 -1.156896<br /><br> 2000-01-05 0.578117 0.511371 0.103552 -2.428202<br /><br> 2000-01-06 0.478344 0.449933 -0.741620 -1.962409<br /><br> 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753<br /><br> ... ... ... ... ...<br /><br> 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940<br /><br> 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107<br /><br> 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740<br /><br> 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439<br /><br> 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593<br /><br> 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560<br /><br> 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368</p><br> <p>[1000 rows x 4 columns]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [ 144 ] : pd . read_hdf ( 'foo.h5' , 'df' )
Out [ 144 ] :
A B C D
2000 - 01 - 01 0.266457 - 0.399641 - 0.219582 1.186860
2000 - 01 - 02 - 1.170732 - 0.345873 1.653061 - 0.282953
2000 - 01 - 03 - 1.734933 0.530468 2.060811 - 0.515536
2000 - 01 - 04 - 1.555121 1.452620 0.239859 - 1.156896
2000 - 01 - 05 0.578117 0.511371 0.103552 - 2.428202
2000 - 01 - 06 0.478344 0.449933 - 0.741620 - 1.962409
2000 - 01 - 07 1.235339 - 0.091757 - 1.543861 - 1.084753
. . . . . . . . . . . . . . .
2002 - 09 - 20 - 10.628548 - 9.153563 - 7.883146 28.313940
2002 - 09 - 21 - 10.390377 - 8.727491 - 6.399645 30.914107
2002 - 09 - 22 - 8.985362 - 8.485624 - 4.669462 31.367740
2002 - 09 - 23 - 9.558560 - 8.781216 - 4.499815 30.518439
2002 - 09 - 24 - 9.902058 - 9.340490 - 4.386639 30.105593
2002 - 09 - 25 - 10.216020 - 9.480682 - 3.933802 29.758560
2002 - 09 - 26 - 11.856774 - 10.671012 - 3.216025 29.369368
[ 1000 rows x 4 columns ]

Excel

阅读和写入 MS Excel:http://pandas.pydata.org/pandas-docs/stable/io.html#io-excel
写入一个 excel 文件

 

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
1
In [ 145 ] : df . to_excel ( 'foo.xlsx' , sheet_name = 'Sheet1' )

从 Excel 文件中读取

 

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])<br /><br> Out[146]:<br /><br> A B C D<br /><br> 2000-01-01 0.266457 -0.399641 -0.219582 1.186860<br /><br> 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953<br /><br> 2000-01-03 -1.734933 0.530468 2.060811 -0.515536<br /><br> 2000-01-04 -1.555121 1.452620 0.239859 -1.156896<br /><br> 2000-01-05 0.578117 0.511371 0.103552 -2.428202<br /><br> 2000-01-06 0.478344 0.449933 -0.741620 -1.962409<br /><br> 2000-01-07 1.235339 -0.091757 -1.543861 -1.084753<br /><br> ... ... ... ... ...<br /><br> 2002-09-20 -10.628548 -9.153563 -7.883146 28.313940<br /><br> 2002-09-21 -10.390377 -8.727491 -6.399645 30.914107<br /><br> 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740<br /><br> 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439<br /><br> 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593<br /><br> 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560<br /><br> 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368</p><br> <p>[1000 rows x 4 columns]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [ 146 ] : pd . read_excel ( 'foo.xlsx' , 'Sheet1' , index_col = None , na_values = [ 'NA' ] )
Out [ 146 ] :
A B C D
2000 - 01 - 01 0.266457 - 0.399641 - 0.219582 1.186860
2000 - 01 - 02 - 1.170732 - 0.345873 1.653061 - 0.282953
2000 - 01 - 03 - 1.734933 0.530468 2.060811 - 0.515536
2000 - 01 - 04 - 1.555121 1.452620 0.239859 - 1.156896
2000 - 01 - 05 0.578117 0.511371 0.103552 - 2.428202
2000 - 01 - 06 0.478344 0.449933 - 0.741620 - 1.962409
2000 - 01 - 07 1.235339 - 0.091757 - 1.543861 - 1.084753
. . . . . . . . . . . . . . .
2002 - 09 - 20 - 10.628548 - 9.153563 - 7.883146 28.313940
2002 - 09 - 21 - 10.390377 - 8.727491 - 6.399645 30.914107
2002 - 09 - 22 - 8.985362 - 8.485624 - 4.669462 31.367740
2002 - 09 - 23 - 9.558560 - 8.781216 - 4.499815 30.518439
2002 - 09 - 24 - 9.902058 - 9.340490 - 4.386639 30.105593
2002 - 09 - 25 - 10.216020 - 9.480682 - 3.933802 29.758560
2002 - 09 - 26 - 11.856774 - 10.671012 - 3.216025 29.369368
[ 1000 rows x 4 columns ]

陷阱

如果你正在尝试一个操作,你会看到一个异常:

 

>>> if pd.Series([False, True, False]):<br /><br> print("I was true")<br /><br> Traceback<br /><br> ...<br /><br> ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
1
2
3
4
5
>>> if pd . Series ( [ False , True , False ] ) :
print ( "I was true" )
Traceback
. . .
ValueError : The truth value of an array is ambiguous . Use a . empty , a . any ( ) or a . all ( ) .



  • zeropython 微信公众号 5868037 QQ号 5868037@qq.com QQ邮箱
【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值