73.Spark大型电商项目-用户访问session分析-算子调优之reduceByKey本地聚合介绍

本文介绍使用ReduceByKey算子在Spark中的作用及其带来的性能提升。通过在Map端进行本地聚合,不仅减少了磁盘I/O操作和内存占用,还降低了网络传输负载及Reduce端的数据处理量。

目录

reduceByKey


本篇文章记录用户访问session分析-算子调优之reduceByKey本地聚合介绍。

reduceByKey

val lines = sc.textFile("hdfs://")
val words = lines.flatMap(_.split(" "))
val pairs = words.map((_, 1))
val counts = pairs.reduceByKey(_ + _)
counts.collect()

reduceByKey,相较于普通的shuffle操作(比如groupByKey),它的一个特点,就是说,会进行map端的本地聚合。

对map端给下个stage每个task创建的输出文件中,写数据之前,就会进行本地的combiner操作,也就是说对每一个key,对应的values,都会执行你的算子函数(_ + _)

用reduceByKey对性能的提升

1、在本地进行聚合以后,在map端的数据量就变少了,减少磁盘IO。而且可以减少磁盘空间的占用。

2、下一个stage,拉取数据的量,也就变少了。减少网络的数据传输的性能消耗。

3、在reduce端进行数据缓存的内存占用变少了。

4、reduce端,要进行聚合的数据量也变少了。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值