Flink结合canal同步到Hbase

本文介绍了如何通过开启MySQL的binlog日志,并利用Canal解析binlog,将数据实时同步到Kafka,再用Flink消费Kafka数据并存储到Hbase中,以减轻MySQL在高并发时的压力。详细步骤包括MySQL binlog配置、Canal安装与代码开发、Flink-Hbase程序测试及打包上线。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

企业运维的数据库最常见的是mysql;但是mysql有个缺陷:当数据量达到千万条的时候,mysql的相关操作会变的非常迟缓

如果这个时候有需求需要实时展示数据;对于mysql来说是一种灾难;而且对于mysql来说,同一时间还要给多个开发人员和用户操作;

所以经过调研,将mysql数据实时同步到hbase中;

日志的问题点:CDC的事物日志能够放到另一块磁盘空间甚至是NAS上的话,那么就不会影响业务数据库

最开始使用的架构方案:

Mysql---logstash—kafka---sparkStreaming---hbase---web
Mysql—sqoop---hbase---web

但是无论使用logsatsh还是使用kafka,都避免不了一个尴尬的问题:

他们在导数据过程中需要去mysql中做查询操作

比如logstash:

 

比如sqoop:

不可避免的,都需要去sql中查询出相关数据,然后才能进行同步;这样对于mysql来说本身就是增加负荷操作;

所以我们真正需要考虑的问题是:有没有什么方法,能将mysql数据实时同步到hbase;但是不增加mysql的负担;

答案是有的:可以使用canal或者maxwell来解析mysql的binlog日志

那么之前的架构就需要改动了:

Mysql---canal—kafka—flink—hbase—web

开发

     第一步:开启mysql的binlog日志

    Mysqlbinlog日志作用是用来记录mysql内部增删等对mysql数据库有更新的内容的记录(对数据库的改动),对数据库的查询selectshow等不会被binlog日志记录;主要用于数据库的主从复制以及增量恢复。

mysqlbinlog日志必须打开log-bin功能才能生存binlog日志

-rw-rw---- 1 mysql mysql   669 8月  10 21:29 mysql-bin.000001

-rw-rw---- 1 mysql mysql   126 8月  10 22:06 mysql-bin.000002

-rw-rw---- 1 mysql mysql 11799 8月  15 18:17 mysql-bin.000003

修改/etc/my.cnf,在里面添加如下内容

[mysqld]

log-bin=/var/lib/mysql/mysql-bin    【binlog日志存放路径】

binlog-format=ROW     【日志中会记录成每一行数据被修改的形式

server_id=1   【指定当前机器的服务ID(如果是集群,不能重复)】

配置完毕之后,登录mysql,输入如下命令:

show variables like ‘%log_bin%’

出现如下形式,代表binlog开启;

第二步:安装canal

    Canal介绍

       canal是阿里巴巴旗下的一款开源项目,纯Java开发。基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了MySQL(也支持mariaDB)。

       起源:早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此开启了一段新纪元。

工作原理

原理相对比较简单:

1、canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议

2、mysql master收到dump请求,开始推送binary log给slave(也就是canal)

3、canal解析binary log对象(原始为byte流)

使用canal解析binlog,数据落地到kafka

(1):解压安装包:canal.deployer-1.0.23.tar.gz

tar -zxvf canal.deployer-1.0.23.tar.gz -C /export/servers/canal

修改配置文件:

vim /export/servers/canal/conf/example/instance.properties

(2):编写canal代码

     仅仅安装了canal是不够的;canal从架构的意义上来说相当于mysql的“从库”,此时还并不能将binlog解析出来实时转发到kafka上,因此需要进一步开发canal代码;

Canal已经帮我们提供了示例代码,只需要根据需求稍微更改即可;

Canal提供的代码:

https://github.com/alibaba/canal/wiki/ClientExample

上面的代码中可以解析出binlog日志,但是没有将数据落地到kafka的代码逻辑,所以我们还需要添加将数据落地kafka的代码;

Maven导入依赖:

<dependency>
  <groupId>com.alibaba.otter</groupId>
  <artifactId>canal.client</artifactId>
  <version>1.0.25</version>
</dependency>



<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka -->
<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka_2.11</artifactId>
  <version>0.9.0.1</version>
</dependency>

   <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-scala_2.11</artifactId>
      <version>1.8.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-scala_2.11</artifactId>
      <version>1.8.1</version>
    </dependency>

//flink 1.8.1对上kafka 0.9
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-kafka-0.9_2.11</artifactId>
      <version>1.8.1</version>
    </dependency>

Canal代码:

import com.alibaba.otter.canal.client.CanalConnector;
  import com.alibaba.otter.canal.client.CanalConnectors;
  import com.alibaba.otter.canal.protocol.CanalEntry;
  import com.alibaba.otter.canal.protocol.Message;
  import com.google.protobuf.InvalidProtocolBufferException;
  import java.net.InetSocketAddress;
  import java.util.ArrayList;
  import java.util.List;
  import java.util.UUID;

  

  /**
 * Created by angel;
 */

  public class Canal_Client {
    public static void main(String[] args) {
        //TODO 1:连接cnnal
        CanalConnector connector = CanalConnectors.newSingleConnector(new InetSocketAddress("hadoop01" , 11111) , "example" , "root" , "root");
        int batchSize = 100 ;
        int emptyCount = 1 ;
        try{
            connector.connect();
            connector.subscribe(".*\\..*");
            connector.rollback();
            int totalEmptyCount = 120 ;
            while (totalEmptyCount > emptyCount){
                final Message message = connector.getWithoutAck(batchSize);
                final long batchid = message.getId();
                final int size = message.getEntries().size();
                if(batchid == -1 || size ==0){
                    System.out.println("暂时没有数据 :"+emptyCount);
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                       e.printStackTrace();
                    }
                }else
                    //TODO 解析binlog
                    Analysis(message.getEntries() , emptyCount);
                    emptyCount++;
                }
            }
        }catch(Exception e){
            e.printStackTrace();
        }finally {
            connector.disconnect();
        }
    }
    //TODO 3:将解析出来的数据区分好:增 删 改 发送到kafka
    public static void Analysis(List<CanalEntry.Entry> entries , int emptyCount){
        for(CanalEntry.Entry entry : entries){
            if(entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONBEGIN || entry.getEntryType() == CanalEntry.EntryType.TRANSACTIONEND){
                continue;
            }
            try {
                final CanalEntry.RowChange rowChange = CanalEntry.RowChange.parseFrom(entry.getStoreValue());
                final CanalEntry.EventType eventType = rowChange.getEventType();
                final String logfileName = entry.getHeader().getLogfileName();
                final long logfileOffset = entry.getHeader().getLogfileOffset();
                final String dbname = entry.getHeader().getSchemaName();
                final String tableName = entry.getHeader().getTableName();
                for(CanalEntry.RowData rowData : rowChange.getRowDatasList()){
                    //区分增删改操作,然后发送给kafka
                    if(eventType == CanalEntry.EventType.DELETE){
                        //删除操作
                        System.out.println("=======删除操作=======");
                        dataDetails(rowData.getAfterColumnsList() , logfileName , logfileOffset , dbname , tableName , emptyCount);
                    }else if (eventType == CanalEntry.EventType.INSERT){
                        //插入操作
                        System.out.println("=======插入操作=======");
                        dataDetails(rowData.getAfterColumnsList() , logfileName , logfileOffset , dbname , tableName , emptyCount);
                    }else {
                       //更改操作
                        System.out.println("=======更改操作=======");
                        dataDetails(rowData.getAfterColumnsList() , logfileName , logfileOffset , dbname , tableName , emptyCount);
                    }
                }
            } catch (InvalidProtocolBufferException e) {
                e.printStackTrace();
            }
        }
    }
    public static void dataDetails(List<CanalEntry.Column> columns , String fileName , Long offset , String DBname , String tableName , int emptyCount){
        List<Object> list = new ArrayList<Object>();
        String sendkey = UUID.randomUUID().toString();
        for(CanalEntry.Column column:columns){
            List<Object> ll = new ArrayList<Object>();
            //获取原值
            ll.add(column.getName());//字段名
            ll.add(column.getValue());//字段值
            //是否更改 true代表更改,false代表不更改
            ll.add(column.getUpdated());
            list.add(ll);
        }
        System.out.println(fileName + "#CS#" + offset +"#CS#"+DBname+"#CS#"+tableName+"#CS#"+list+"#CS#"+ emptyCount);

        //将解析后的数据发送到kafka上
        KafkaProducer.sendMsg("canal" , sendkey , fileName + "#CS#" + offset +"#CS#"+DBname+"#CS#"+tableName+"#CS#"+list+"#CS#"+ emptyCount);

    }

}

Kafka代码:

import kafka.javaapi.producer.Producer;
  import kafka.producer.KeyedMessage;
  import kafka.producer.ProducerConfig;
  import kafka.serializer.StringEncoder;
  import java.util.Properties;
  /**
 * Created by angel;
 */

  public class KafkaProducer {
    private String topic;
    public KafkaProducer(String topic){
        super();
        this.topic = topic ;
    }
   public static void sendMsg(String topic , String sendKey , String data){
        Producer producer = createProducer();
        producer.send(new KeyedMessage<String, String>(topic,sendKey,data));
    }

  
    public static Producer<Integer,String> createProducer(){
        Properties properties = new Properties();
        properties.put("zookeeper.connect" , "hadoop01:2181");
        properties.put("metadata.broker.list" , "hadoop01:9092");
        properties.put("serializer.class" , StringEncoder.class.getName());
        final ProducerConfig producerConfig = new ProducerConfig(properties);
        return new Producer<Integer,String>(producerConfig);
    }
}

测试canal代码

启动kafka并创建topic

/export/servers/kafka/bin/kafka-server-start.sh /export/servers/kafka/config/server.properties >/dev/null 2>&1 &
/export/servers/kafka/bin/kafka-topics.sh --create --zookeeper hadoop01:2181 --replication-factor 1 --partitions 1 --topic canal

启动mysql的消费者客户端,观察canal是否解析binlog

/export/servers/kafka/bin/kafka-console-consumer.sh --zookeeper hadoop01:2181 --from-beginning --topic canal

启动canal:canal/bin/startup.sh

启动mysql:service mysqld start

进入mysql:mysql -u 用户 -p 密码;然后进行增删改

测试下上面的代码 

插入

 更新

 删除

 重启下,日志重头开始的

使用flink将kafka中的数据解析成Hbase的DML操作,然后实时存储到hbase中

import java.util
  import java.util.Properties
  import org.apache.commons.lang3.StringUtils
  import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
  import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09
  import org.apache.flink.streaming.util.serialization.SimpleStringSchema
  import org.apache.flink.api.scala._
  import org.apache.flink.runtime.state.filesystem.FsStateBackend
  import org.apache.flink.streaming.api.{CheckpointingMode, TimeCharacteristic}
  import org.apache.hadoop.hbase.{HBaseConfiguration, HColumnDescriptor, HTableDescriptor, TableName}
  import org.apache.hadoop.hbase.client.{ConnectionFactory, Delete, Put}
  import org.apache.hadoop.hbase.util.Bytes

  /**
  * Created by angel;
  */
  object DataExtraction {
  //1指定相关信息
  val zkCluster = "hadoop01,hadoop02,hadoop03"
  val kafkaCluster = "hadoop01:9092,hadoop02:9092,hadoop03:9092"
  val kafkaTopicName = "canal"
  val hbasePort = "2181"
  val tableName:TableName = TableName.valueOf("canal")
  val columnFamily = "info" 

  def main(args: Array[String]): Unit = {
    //2.创建流处理环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStateBackend(new FsStateBackend("hdfs://hadoop01:9000/flink-checkpoint/checkpoint/"))
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    //定期发送
    env.getConfig.setAutoWatermarkInterval(2000)
    env.getCheckpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE)
    env.getCheckpointConfig.setCheckpointInterval(6000)
    System.setProperty("hadoop.home.dir", "/");
    //3.创建kafka数据流
    val properties = new Properties()
    properties.setProperty("bootstrap.servers", kafkaCluster)
    properties.setProperty("zookeeper.connect", zkCluster)
    properties.setProperty("group.id", kafkaTopicName)
    val kafka09 = new FlinkKafkaConsumer09[String](kafkaTopicName, new SimpleStringSchema(), properties)
    //4.添加数据源addSource(kafka09)
    val text = env.addSource(kafka09).setParallelism(1)
    //5、解析kafka数据流,封装成canal对象
    val values = text.map{
      line =>
        val values = line.split("#CS#")
        val valuesLength = values.length
        //
        val fileName = if(valuesLength > 0) values(0) else ""
        val fileOffset = if(valuesLength > 1) values(1) else ""
        val dbName = if(valuesLength > 2) values(2) else ""
        val tableName = if(valuesLength > 3) values(3) else ""
        val eventType = if(valuesLength > 4) values(4) else ""
        val columns = if(valuesLength > 5) values(5) else ""
        val rowNum = if(valuesLength > 6) values(6) else ""
        //(mysql-bin.000001,7470,test,users,[uid, 18, true, uname, spark, true, upassword, 1111, true],null,1)
        Canal(fileName , fileOffset , dbName , tableName ,eventType, columns  , rowNum)
    }

  

  

    //6、将数据落地到Hbase
    val list_columns_ = values.map{
      line =>
        //处理columns字符串
        val strColumns = line.columns
        //[[uid, 22, true], [uname, spark, true], [upassword, 1111, true]]
        val array_columns = packaging_str_list(strColumns)
        //获取主键
        val primaryKey = getPrimaryKey(array_columns)
        //拼接rowkey  DB+tableName+primaryKey
        val rowkey = line.dbName+"_"+line.tableName+"_"+primaryKey
        //获取操作类型INSERT UPDATE DELETE
        val eventType = line.eventType
        //获取触发的列:inser update
        val triggerFileds: util.ArrayList[UpdateFields] = getTriggerColumns(array_columns , eventType)
        //因为不同表直接有关联,肯定是有重合的列,所以hbase表=line.dbName + line.tableName
        val hbase_table = line.dbName + line.tableName
        //根据rowkey删除数据
        if(eventType.equals("DELETE")){
          operatorDeleteHbase(rowkey , eventType)
        }else{
          if(triggerFileds.size() > 0){
            operatorHbase(rowkey , eventType , triggerFileds)
          }
        }
    }
    env.execute()
  }

  

  

  

  //封装字符串列表
  def packaging_str_list(str_list:String):String ={
    val substring = str_list.substring(1 , str_list.length-1)
    substring
  }
 

  //获取每个表的主键
  def getPrimaryKey(columns :String):String = {
    //  [uid, 1, false], [uname, abc, false], [upassword, uabc, false]
     val arrays: Array[String] = StringUtils.substringsBetween(columns , "[" , "]")
    val primaryStr: String = arrays(0)//uid, 13, true
    primaryStr.split(",")(1).trim
  }

  
  //获取触发更改的列
  def getTriggerColumns(columns :String , eventType:String): util.ArrayList[UpdateFields] ={
    val arrays: Array[String] = StringUtils.substringsBetween(columns , "[" , "]")
    val list = new util.ArrayList[UpdateFields]()
    eventType match {
      case "UPDATE" =>
        for(index <- 1 to arrays.length-1){
          val split: Array[String] = arrays(index).split(",")
          if(split(2).trim.toBoolean == true){
            list.add(UpdateFields(split(0) , split(1)))
          }
        }
        list
      case "INSERT" =>
        for(index <- 1 to arrays.length-1){
          val split: Array[String] = arrays(index).split(",")
          list.add(UpdateFields(split(0) , split(1)))
        }
        list
      case _ =>
        list
    }
  }

  //增改操作
  def operatorHbase(rowkey:String , eventType:String , triggerFileds:util.ArrayList[UpdateFields]): Unit ={
    val config = HBaseConfiguration.create();
    config.set("hbase.zookeeper.quorum", zkCluster);
    config.set("hbase.master", "hadoop01:60000");
    config.set("hbase.zookeeper.property.clientPort", hbasePort);
    config.setInt("hbase.rpc.timeout", 20000);
    config.setInt("hbase.client.operation.timeout", 30000);
    config.setInt("hbase.client.scanner.timeout.period", 200000);
    val connect = ConnectionFactory.createConnection(config);
    val admin = connect.getAdmin
    //构造表描述器
    val hTableDescriptor = new HTableDescriptor(tableName)
    //构造列族描述器
    val hColumnDescriptor = new HColumnDescriptor(columnFamily)
    hTableDescriptor.addFamily(hColumnDescriptor)
    if(!admin.tableExists(tableName)){
      admin.createTable(hTableDescriptor);
    }

    //如果表存在,则开始插入数据
    val table = connect.getTable(tableName)
    val put = new Put(Bytes.toBytes(rowkey))
    //获取对应的列[UpdateFields(uname, spark), UpdateFields(upassword, 1111)]
    for(index <- 0 to triggerFileds.size()-1){
      val fields = triggerFileds.get(index)
      val key = fields.key
      val value = fields.value
      put.addColumn(Bytes.toBytes(columnFamily) , Bytes.toBytes(key) , Bytes.toBytes(value))
    }
   table.put(put)
  }

  //删除操作

  def operatorDeleteHbase(rowkey:String , eventType:String): Unit ={
    val config = HBaseConfiguration.create()
    config.set("hbase.zookeeper.quorum", zkCluster);
    config.set("hbase.zookeeper.property.clientPort", hbasePort);
    config.setInt("hbase.rpc.timeout", 20000);
    config.setInt("hbase.client.operation.timeout", 30000);
    config.setInt("hbase.client.scanner.timeout.period", 200000);
    val connect = ConnectionFactory.createConnection(config);
    val admin = connect.getAdmin
    //构造表描述器
    val hTableDescriptor = new HTableDescriptor(tableName)
    //构造列族描述器
    val hColumnDescriptor = new HColumnDescriptor(columnFamily)
    hTableDescriptor.addFamily(hColumnDescriptor)
    if(admin.tableExists(tableName)){
      val table = connect.getTable(tableName)
      val delete = new Delete(Bytes.toBytes(rowkey))
      table.delete(delete)
    }
  }

}

  //[uname, spark, true], [upassword, 11122221, true]
  case class UpdateFields(key:String , value:String)
 
  //(fileName , fileOffset , dbName , tableName ,eventType, columns  , rowNum)
  case class Canal(fileName:String ,
                fileOffset:String,
                 dbName:String ,
                 tableName:String ,
                 eventType:String ,
                 columns:String ,
                 rowNum:String
                )

测试flink-hbase的程序:

1、启动hbase

2、登录hbase shell

3、启动程序

4、观察数据是否实时落地到hbase

打包上线

添加maven打包依赖:

1:打包java程序

<build>
  <sourceDirectory>src/main/java</sourceDirectory>
  <testSourceDirectory>src/test/scala</testSourceDirectory>
  <plugins>
    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-compiler-plugin</artifactId>
      <version>2.5.1</version>
      <configuration>
        <source>1.7</source>
        <target>1.7</target>
        <!--<encoding>${project.build.sourceEncoding}</encoding>-->
      </configuration>
    </plugin>

    <plugin>
      <groupId>net.alchim31.maven</groupId>
      <artifactId>scala-maven-plugin</artifactId>
      <version>3.2.0</version>
      <executions>
        <execution>
          <goals>
            <goal>compile</goal>
            <goal>testCompile</goal>
          </goals>
         <configuration>
            <args>
              <!--<arg>-make:transitive</arg>-->
              <arg>-dependencyfile</arg>
              <arg>${project.build.directory}/.scala_dependencies</arg>
            </args>
          </configuration>
        </execution>
      </executions>
    </plugin>

    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-surefire-plugin</artifactId>
      <version>2.18.1</version>
      <configuration>
        <useFile>false</useFile>
        <disableXmlReport>true</disableXmlReport>
        <includes>
          <include>**/*Test.*</include>
          <include>**/*Suite.*</include>
        </includes>
      </configuration>
    </plugin>



    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-shade-plugin</artifactId>
      <version>2.3</version>
      <executions>
        <execution>
          <phase>package</phase>
          <goals>
            <goal>shade</goal>
          </goals>
          <configuration>
            <filters>
              <filter>
                <artifact>*:*</artifact>
                <excludes>
                  <!--
                  zip -d learn_spark.jar META-INF/*.RSA META-INF/*.DSA META-INF/*.SF
                  -->
                  <exclude>META-INF/*.SF</exclude>
                  <exclude>META-INF/*.DSA</exclude>
                  <exclude>META-INF/*.RSA</exclude>
                </excludes>
              </filter>
            </filters>
            <transformers>
              <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                <mainClass>canal.CanalClient</mainClass>
              </transformer>
            </transformers>
          </configuration>
        </execution>
      </executions>
    </plugin>
  </plugins>
</build>

打包scala程序

将上述的maven依赖红色标记处修改成:

<sourceDirectory>src/main/scala</sourceDirectory>

<mainClass>scala的驱动类</mainClass>

maven打包步骤:

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值