RMQ的二维应用,核心思想和一维一样
#include <stdio.h> #include <vector> #include <string.h> #include <algorithm> using namespace std; const int MAXN = 301; const int MAXM = 301; int n, m, val[MAXN][MAXM]; int dp[MAXN][MAXM][9][9]; int log ( int x ) { int ans = 0; while ( ( 1 << ans ) <= x ) { ans++; } return ans - 1; } void RMQ_2D_PRE() { for ( int r = 1; r <= n; ++r ) { for ( int c = 1; c <= m; ++c ) { dp[r][c][0][0] = val[r][c]; } } int mx = log ( n ), my = log ( m ); for ( int i = 0; i <= mx; ++i ) { for ( int j = 0; j <= my; ++j ) { if ( i == 0 && j == 0 ) { continue; } for ( int r = 1; r + ( 1 << i ) - 1 <= n; ++r ) { for ( int c = 1; c + ( 1 << j ) - 1 <= m; ++c ) { if ( i == 0 ) { dp[r][c][i][j] = max ( dp[r][c][i][j - 1], dp[r][c + ( 1 << ( j - 1 ) )][i][j - 1] ); } else { dp[r][c][i][j] = max ( dp[r][c][i - 1][j], dp[r + ( 1 << ( i - 1 ) )][c][i - 1][j] ); } } } } } } int RMQ_2D ( int x1, int x2, int y1, int y2 ) { int kx = log(x2-x1+1); int ky = log(y2-y1+1); int m1 = dp[x1][y1][kx][ky]; int m2 = dp[x2-(1<<kx)+1][y1][kx][ky]; int m3 = dp[x1][y2-(1<<ky)+1][kx][ky]; int m4 = dp[x2-(1<<kx)+1][y2-(1<<ky)+1][kx][ky]; return max(max(m1, m2), max(m3, m4)); } int main() { #ifdef __GNUC__ freopen ( "in.txt", "r", stdin ); #endif // __GNUC__ int q; int x1, x2, y1, y2; while ( scanf ( "%d%d", &n, &m ) != EOF ) { for ( int i = 1; i <= n; ++i ) { for ( int j = 1; j <= m; ++j ) { scanf ( "%d", &val[i][j] ); } } RMQ_2D_PRE(); scanf ( "%d", &q ); while ( q-- ) { scanf ( "%d%d%d%d", &x1, &y1, &x2, &y2 ); int ans = RMQ_2D(x1, x2, y1, y2); printf("%d ", ans); if (ans == val[x1][y1] || ans == val[x1][y2] || ans == val[x2][y1] || ans == val[x2][y2]) printf("yes\n"); else printf("no\n"); } } return 0; }
hdu 2888 Check Corners
最新推荐文章于 2022-08-13 15:51:45 发布