转载摘录自:《大数据Hadoop之——HDFS小文件问题与处理实战操作》
大数据Hadoop之——HDFS小文件问题与处理实战操作_大数据老司机的博客-优快云博客
文件块大小设置
同样对于如何设置每个文件块的大小,官方给出了这样的建议:
所以对于块大小的设置既不能太大,也不能太小,太大会使得传输时间加长,程序在处理这块数据时会变得非常慢,如果文件块的大小太小的话会增加每一个块的寻址时间。所以文件块的大小设置取决于磁盘的传输速率。
二、HDFS小文件问题处理方案
HDFS中文件上传会经常有小文件的问题,每个块大小会有150字节的大小的元数据存储namenode中,如果过多的小文件每个小文件都没有到达设定的块大小,都会有对应的150字节的元数据,这对namenode资源浪费很严重,同时对数据处理也会增加读取时间。对于小文件问题,Hadoop本身也提供了几个解决方案,分别为:Hadoop Archive,Sequence file和CombineFileInputFormat,除了hadoop本身提供的方案,当然还有其它的方案,下面会详细讲解。
Hadoop Archive(HAR)
Hadoop Archive(HAR) 是一个高效地将小文件放入HDFS块中的文件存档工具,它能够将多个小文件打包成一个HAR文件,这样在减少namenode内存使用的同时,仍然允许对文件进行透明的访问。
【示例】对某个目录/foo/bar下的所有小文件存档成/outputdir/zoo.har:
hadoop archive -archiveName foo.har -p /foo/bar /outputdir
1
当然,也可以指定HAR的大小(使用-Dhar.block.size)。
HAR是在Hadoop file system之上的一个文件系统,因此所有fs shell命令对HAR文件均可用,只不过是文件路径格式不一样,HAR的访问路径可以是以下两种格式:
# scheme-hostname格式为hdfs-域名:端口,如果没有提供scheme-hostname,它会使用默认的文件系统。这种情况下URI是这种形式:
har://scheme-hostname:port/archivepath/fileinarchive
har:///archivepath/fileinarchive
1
2
3
4
可以这样查看HAR文件存档中的文件:
hdfs dfs -ls har:///user/zoo/foo.har
输出:
har:///user/zoo/foo.har/hadoop/dir1
har:///user/zoo/foo.har/hadoop/dir2
1
2
3
4
5
6
7
使用HAR时需要注意两点:
对小文件进行存档后,原文件并不会自动被删除,需要用户自己删除;
创建HAR文件的过程实际上是在运行一个mapreduce作业,因而需要有一个hadoop集群运行此命令。
此外,HAR还有一些缺陷:
一旦创建,Archives便不可改变。要增加或移除里面的文件,必须重新创建归档文件。
要归档的文件名中不能有空格,否则会抛出异常,可以将空格用其他符号替换(使用-Dhar.space.replacement.enable=true 和-Dhar.space.replacement参数)。
不支持修改
--------------------------------------
Archive注意事项:
Hadoop archives是特殊的档案格式, 扩展名是*.har;
创建archives本质是运行一个Map/Reduce任务,所以应该在Hadoop集群运行创建档案的命令;
创建archive文件要消耗和原文件一样多的硬盘空间;
archive文件不支持压缩;
archive文件一旦创建就无法改变,要修改的话,需要创建新的archive文件;
当创建archive时,源文件不会被更改或删除;
------------------------------------------
2)Sequence file
Sequence file由一系列的二进制key/value组成,如果为key小文件名,value为文件内容,则可以将大批小文件合并成一个大文件。
Hadoop-0.21.0中提供了SequenceFile,包括Writer,Reader和SequenceFileSorter类进行写,读和排序操作。如果hadoop版本低于0.21.0的版本。
和 HAR 不同的是,这种方式还支持压缩。该方案对于小文件的存取都比较自由,不限制用户和文件的多少,但是 SequenceFile 文件不能追加写入,适用于一次性写入大量小文件的操作。也是不支持修改的。
3)CombineFileInputFormat
CombineFileInputFormat是一种新的inputformat,用于将多个文件合并成一个单独的split,在map和reduce处理之前组合小文件。
4)开启JVM重用
有小文件场景时开启JVM重用;如果没有产生小文件,不要开启JVM重用,因为会一直占用使用到的task卡槽,直到任务完成才释放。
JVM重用可以使得JVM实例在同一个job中重新使用N次,N的值可以在Hadoop的mapred-site.xml文件中进行配置。通常在10-20之间。
<property>
<name>mapreduce.job.jvm.numtasks</name>
<value>10</value>
<description>How many tasks to run per jvm,if set to -1 ,there is no limit</description>
</property>
1
2
3
4
5
5)合并本地的小文件,上传到 HDFS(appendToFile )
将本地的多个小文件,上传到 HDFS,可以通过 HDFS 客户端的 appendToFile 命令对小文件进行合并。
6)合并 HDFS 的小文件,下载到本地(getmerge)
可以通过 HDFS 客户端的 getmerge 命令,将很多小文件合并成一个大文件,然后下载到本地。
————————————————
版权声明:本文为优快云博主「大数据老司机」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.youkuaiyun.com/qq_35745940/article/details/126443258