Brief overview of backward and forward

Let’s say we only feed in one data point.

  • out = model:forward( xi ) computes fw(xi) where fw is our model with its current parameters w , and stores the result in out.
  • loss = criterion:forward(out, yi) computes the loss (fw(xi),yi) with respect to the true value yi .
  • dl_dout = criterion:backward(out, yi ) computes (...)fw(xi) .
  • model:backward( xi , dl_dout) computes (...)w and stores this gradient in a place we have a reference to, usually called gradParameters in our code.
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值