【Codeforces Round 339 (Div 2)C】【计算几何 点到直线的距离模板】Peter and Snow Blower 多边形整体绕一圆心旋转的运行面积

本文介绍了一种特殊雪地清扫机的工作原理及其路径计算方法。该机器绕固定点旋转,清除路径上的积雪。文章提供了计算清扫区域面积的算法,并通过示例展示了计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. Peter and Snow Blower
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Peter got a new snow blower as a New Year present. Of course, Peter decided to try it immediately. After reading the instructions he realized that it does not work like regular snow blowing machines. In order to make it work, you need to tie it to some point that it does not cover, and then switch it on. As a result it will go along a circle around this point and will remove all the snow from its path.

Formally, we assume that Peter's machine is a polygon on a plane. Then, after the machine is switched on, it will make a circle around the point to which Peter tied it (this point lies strictly outside the polygon). That is, each of the points lying within or on the border of the polygon will move along the circular trajectory, with the center of the circle at the point to which Peter tied his machine.

Peter decided to tie his car to point P and now he is wondering what is the area of ​​the region that will be cleared from snow. Help him.

Input

The first line of the input contains three integers — the number of vertices of the polygon n (), and coordinates of point P.

Each of the next n lines contains two integers — coordinates of the vertices of the polygon in the clockwise or counterclockwise order. It is guaranteed that no three consecutive vertices lie on a common straight line.

All the numbers in the input are integers that do not exceed 1 000 000 in their absolute value.

Output

Print a single real value number — the area of the region that will be cleared. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
input
3 0 0
0 1
-1 2
1 2
output
12.566370614359172464
input
4 1 -1
0 0
1 2
2 0
1 1
output
21.991148575128551812
Note

In the first sample snow will be removed from that area:


#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 1e5+10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
const double PI = acos(-1.0);
int n;

//做与二维点相关的题,最好要用写Point结构体的好习惯
struct Point
{
    LL x, y;
    Point() {}
    Point(int x_, int y_) { x = x_; y = y_; }
    Point operator - (const Point& b)const
    {
        return Point(x - b.x, y - b.y);
    }
}P,a[N];

//求两个向量的点积
double Dot(Point& a,Point& b)
{
    return a.x*b.x + a.y*b.y;
}
//返回一个向量的长度
double Len(Point a)
{
    return sqrt(a.x*a.x + a.y*a.y);
}
//返回两个点之间的距离
double Dis(Point& a,Point& b)
{
    return Len(Point(a - b));
}
//返回点a到线段bc的最短距离
double Point_To_Segment(Point& a,Point& b,Point& c)
{
    Point x = a - b;
    Point y = c - b;
    Point z = c - a;
    if (Dot(x, y) < 0)return Len(x);
    if (Dot(y, z) < 0)return Len(z);
    return fabs((x.x*y.y - x.y*y.x) / Len(y));
}
int main()
{
    while (~scanf("%d%lld%lld", &n,&P.x,&P.y))
    {
        double mindis=1e18;
        double maxdis=0;
        for (int i = 1; i <= n; ++i)scanf("%lld%lld", &a[i].x, &a[i].y);
        a[n + 1] = a[1];
        for (int i = 1; i <= n;++i)
        {
            gmax(maxdis, Dis(P, a[i]));
            gmin(mindis, Point_To_Segment(P, a[i], a[i + 1]));
        }
        double ans = PI*(maxdis*maxdis - mindis*mindis);
        printf("%.15f\n", ans);
    }
    return 0;
}
/*
【trick&&吐槽】
1,这题真的要骂自己是傻逼= =,我三分了,用的却不是double存结果。
    导致最后输出的必然是个整数,于是肯定错。
    三分是可以正确AC的,而且三分50次就能过>_<
2,要开始学点计算几何基础了。比如点到直线的距离。

【题意】
给你一个凸包,任意三点不共线。
这个凸包围绕一个中心旋转。
问你旋转出来的面积是多少

【类型】
计算几何 点到直线距离

【分析】
两点式如何转化为一般式?
(y-y1)/(y2-y1)==(x-x1)(x2-x1)
(y-y1)(x2-x1)==(x-x1)(y2-y1)
yx2 -y1x2 -x1y +x1y1 == xy2 -x1y2 -y1x +x1y1
(y2-y1)x +(x1-x2)y == x1y2-x2y1
得到
a=(y2-y1)
b=(x1-x2)
c=x2y1-x1y2

点到直线的距离=|ax+by+c|/sqrt(a^2+b^2)

【时间复杂度&&优化】
三分:O(n*三分次数)
公式:O(n)

【数据】
3 0 0
2 2
-2 2
0 4

*/


### Codeforces Round 1028 (Div. 2) 题目概述 Codeforces Round 1028 (Div. 2) 是一场包含多个算法问题的比赛,涵盖了从简单到复杂的不同难度级别。以下是该比赛的部分题目内容及简要说明: #### A. Gellyfish and Flower 在本题中,有两个角色:Gellyfish 和 Flower。每个角色有两滴血量,分别用 \(a\) 和 \(c\) 表示 Gellyfish 的血量,用 \(b\) 和 \(d\) 表示 Flower 的血量[^3]。 获胜条件是攻击对方的最低血量,并比较双方的最低血量值。如果 Gellyfish 的最低血量小于 Flower 的最低血量,则 Gellyfish 获胜;否则,Flower 获胜。 #### B. Problem - B - Codeforces B 题的具体内容未完全提供,但通常涉及数组、字符串或其他数据结构的操作。可以参考比赛页面获取完整描述。 #### C. Rectangles C 题要求处理矩形的相关问题。具体来说,给定一些矩形的边长信息,需要判断某些条件是否满足。时间限制为每组测试用例 2 秒,内存限制为 256 MB[^2]。输入和输出均为标准格式,详细规则可参考比赛页面。 ### 示例代码(A 题) 以下是一个实现 A 题逻辑的 C++ 程序: ```cpp #include <iostream> #include <algorithm> using namespace std; int main() { int t; cin >> t; while (t--) { int a, b, c, d; cin >> a >> b >> c >> d; int mina = min(a, c); int minb = min(b, d); if (mina < minb) cout << "Flower" << endl; else cout << "Gellyfish" << endl; } } ``` 此代码通过多次循环读取输入并计算两个角色的最低血量,最终输出获胜者名称。 ### 注意事项 - 比赛中的所有题目均可以通过官方链接访问,例如 [Codeforces Round 1028 (Div. 2)](http://codeforces.com/contest/1028)[^2]。 - 每道题目的详细规则和样例输入输出可在对应页面找到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值