【LeetCode】Binary Tree Postorder Traversal

本文详细解释了后序遍历二叉树的递归与非递归方法,包括思路、代码实现及优化技巧。重点介绍了非递归方法中的堆栈应用,并提供了示例代码。此外,还讨论了如何在代码中正确使用`vector`进行数据拼接,以及推荐了学习C++的相关资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考链接:

参考1:在写非递归时遇到一点困难,一直没想明白应该怎么写,最后参加这个代码终于写出来的。

http://www.cnblogs.com/changchengxiao/p/3416402.html

谢谢分享!

参考2:这个方法很有意思,利用堆栈很按后序的逆序输入再做一次逆序,赞!!!

http://www.cnblogs.com/xinsheng/p/3460480.html

题目描述


[LeetCode] Binary Tree Postorder Traversal

Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
    \
     2
    /
   3

 

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

题目分析

递归方法:
这个方法简单,只要按照 左儿子 -> 右儿子 -> 自己 的顺序就可以了

非递归方法1:
相比于前序遍历,后续遍历思维上难度要大些,前序遍历是通过一个stack,首先压入父亲结点,然后弹出父亲结点,并输出它的value,之后压人其右儿子,左儿子即可。然而后序遍历结点的访问顺序是:左儿子 -> 右儿子 -> 自己。那么一个结点需要两种情况下才能够输出:第一,它已经是叶子结点;第二,它不是叶子结点,但是它的儿子已经输出过(代码里非递归方法head就是用来记录访问过的儿子的)。那么基于此我们只需要记录一下当前输出的结点即可。对于一个新的结点,如果它不是叶子结点,儿子也没有访问,那么就需要将它的右儿子,左儿子压入。如果它满足输出条件,则输出它,并记录下当前输出结点。输出在stack为空时结束。


非递归方法2:

利用堆栈很按后序的逆序输入再做一次逆序

从一开始,就按 自己->右儿子->左儿子顺序输出,最后做一下逆序就好

总结

在写代码时有一个地方出了bug,有的是就是没搞明白怎么把两个vector拼在一起

这里对vector的使用方法要得当,把两个vector拼在一起的方法:
把out1,out2,拼成(out1,out2) 
out2.insert(out2.begin(),out1.begin(),out1.end());//out1,out2顺序不要弄错 


示例代码

/*
编译环境CFree 5.0 
*/
#include 
  
   
#include 
   
    
#include 
    
     
using namespace std;


#define METHOD 1 //1- 递归法
//#define METHOD 2//2- 堆栈方法1 
//#define METHOD 3//3- 堆栈方法3 


 

/**
 * Definition for binary tree
 */
struct TreeNode {
    int val;
     TreeNode *left;
     TreeNode *right;
     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 };
void printVector(vector
     
       in,char* name)
{
	printf("%s size=%d\n",name,in.size());	
	for(int i = 0;i< in.size();i++)
    {
    	printf("%d  ",in[i]);
	}
	printf("\n");
}
#if METHOD == 1
/*
这里对vector的使用方法要得当,把两个vector拼在一起的方法是
把out1,out2,拼成(out1,out2) 
out2.insert(out2.begin(),out1.begin(),out1.end());//out1,out2顺序不要弄错 
*/
class Solution {
public:
    vector
      
        postorderTraversal(TreeNode *root) {
        vector
       
         out; if(root == NULL) return out; vector
        
          out1 = postorderTraversal(root->left); vector
         
           out2 = postorderTraversal(root->right); out.insert(out.begin(),root->val); //中 out.insert(out.begin(),out2.begin(),out2.end()); //右 out.insert(out.begin(),out1.begin(),out1.end()); //左 return out; } }; #elif METHOD == 2 //堆栈方法 //这个方法不太好理解,需要加以研究 class Solution { public: vector
          
            postorderTraversal(TreeNode *root) { vector
           
             out; if(root == NULL) return out; TreeNode *head = root; //就是记录上一个弹出的结点 treenodeStack.push(root); while(!treenodeStack.empty()) { TreeNode *cur = treenodeStack.top();//增加一个记录点 if(cur->left == head || cur->right== head ||(cur->left == NULL && cur->right == NULL))//这个条件很关键 { treenodeStack.pop(); out.push_back(cur->val); head = cur; //printf("pop = %d\n",cur->val); //system("pause"); } else { if(cur->right != NULL) treenodeStack.push(cur->right)/*,printf("lpush = %d\n",cur->right->val)*/; if(cur->left != NULL) treenodeStack.push(cur->left)/*,printf("rpush = %d\n",cur->left->val)*/; } } return out; } private: stack
            
              treenodeStack; }; #elif METHOD == 3 /* 这个方法赞呀!自己->右儿子->左儿子顺序输出,最后做一下逆序就好 */ class Solution { public: vector
             
               postorderTraversal(TreeNode *root) { vector
              
                res; if(root == NULL) return res; vector
               
                 stc; stc.push_back(root); while(!stc.empty()) { TreeNode* node = stc.back(); res.push_back(node->val); stc.pop_back(); if(node->left != NULL) { stc.push_back(node->left); } if(node->right != NULL) { stc.push_back(node->right); } } reverse(res.begin(), res.end()); return res; } }; #endif /*功能测试*/ void test0() { /* 1 2 3 4 5 6 7 */ TreeNode node1(1); TreeNode node2(2); TreeNode node3(3); TreeNode node4(4); TreeNode node5(5); TreeNode node6(6); TreeNode node7(7); node1.left = &node2; node1.right = &node3; node2.left = &node4; node2.right = &node5; node3.left = &node6; node3.right = &node7; Solution so; vector
                
                  out = so.postorderTraversal(&node1); int tmp[7] = {4,5,2,6,7,3,1}; int i = 0; for(i = 0;i<7 && i
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   
  

推荐学习C++的资料

C++标准函数库
在线C++API查询

1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值