Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and KOutput
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
输入两个数,用第一个数去追第二个个数,求最少步数
(第一个数只能1,变成自身两倍2,向前一步,3,向后一步)一次只能做其中一次动作。
思路:
这就是一道很明显的广搜了,队列中依次取出,做三种动作生成三个元素放队尾,一旦出现到达第二个的值,此时必定是最少步数,细节看下面
#include<stdio.h>
#include<queue>
#include<string.h>
#include<iostream>
using namespace std;
int a[200005];记录开始点数到此数用最少多少步,用于记忆化搜索,如曾计算过此数,便不用算了,,,这个还是看大神代码接受的指导
int main()
{
int n, k, t;
queue<int>q;
cin>>n>>k;
memset(a,-1,sizeof(a));
a[n] = 0;//起始到起始当然0步
q.push(n);
while (!q.empty())
{
t=q.front();
q.pop();
if (t==k)
{
cout<<a[k]<<endl;//到达
return 0;
}
if(t-1>=0&&a[t-1]==-1)//以下就是三种走法
{
a[t-1]=a[t]+1;q.push(t-1);
}
if (t+1<200001&&a[t+1]==-1)
{
q.push(t+1);a[t+1]=a[t]+1;
}
if (t*2<200004&&a[t*2]==-1)
{
q.push(t*2);a[t*2]=a[t]+1;
}
}
}