Redis 分布式锁

原文转自:https://www.cnblogs.com/liuyang0/p/6744076.html

概述

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。

选用Redis实现分布式锁原因

  • Redis有很高的性能
  • Redis命令对此支持较好,实现起来比较方便

在此就不介绍Redis的安装了,具体在Linux和Windows中的安装可以查看我前面的博客。
http://www.cnblogs.com/liuyang0/p/6504826.html

使用命令介绍

SETNX

SETNX key val
当且仅当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

expire

expire key timeout
为key设置一个超时时间,单位为second,超过这个时间锁会自动释放,避免死锁。

delete

delete key
删除key

在使用Redis实现分布式锁的时候,主要就会使用到这三个命令。

实现

使用的是jedis来连接Redis。

实现思想

  • 获取锁的时候,使用setnx加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的value值为一个随机生成的UUID,通过此在释放锁的时候进行判断。
  • 获取锁的时候还设置一个获取的超时时间,若超过这个时间则放弃获取锁。
  • 释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

分布式锁的核心代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.Transaction;
import redis.clients.jedis.exceptions.JedisException;

import java.util.List;
import java.util.UUID;

/**
 * Created by liuyang on 2017/4/20.
 */
public class DistributedLock {
    private final JedisPool jedisPool;

    public DistributedLock(JedisPool jedisPool) {
        this.jedisPool = jedisPool;
    }

    /**
     * 加锁
     * @param locaName  锁的key
     * @param acquireTimeout  获取超时时间
     * @param timeout   锁的超时时间
     * @return 锁标识
     */
    public String lockWithTimeout(String locaName,
                                  long acquireTimeout, long timeout) {
        Jedis conn = null;
        String retIdentifier = null;
        try {
            // 获取连接
            conn = jedisPool.getResource();
            // 随机生成一个value
            String identifier = UUID.randomUUID().toString();
            // 锁名,即key值
            String lockKey = "lock:" + locaName;
            // 超时时间,上锁后超过此时间则自动释放锁
            int lockExpire = (int)(timeout / 1000);

            // 获取锁的超时时间,超过这个时间则放弃获取锁
            long end = System.currentTimeMillis() + acquireTimeout;
            while (System.currentTimeMillis() < end) {
                if (conn.setnx(lockKey, identifier) == 1) {
                    conn.expire(lockKey, lockExpire);
                    // 返回value值,用于释放锁时间确认
                    retIdentifier = identifier;
                    return retIdentifier;
                }
                // 返回-1代表key没有设置超时时间,为key设置一个超时时间
                if (conn.ttl(lockKey) == -1) {
                    conn.expire(lockKey, lockExpire);
                }

                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retIdentifier;
    }

    /**
     * 释放锁
     * @param lockName 锁的key
     * @param identifier    释放锁的标识
     * @return
     */
    public boolean releaseLock(String lockName, String identifier) {
        Jedis conn = null;
        String lockKey = "lock:" + lockName;
        boolean retFlag = false;
        try {
            conn = jedisPool.getResource();
            while (true) {
                // 监视lock,准备开始事务
                conn.watch(lockKey);
                // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁
                if (identifier.equals(conn.get(lockKey))) {
                    Transaction transaction = conn.multi();
                    transaction.del(lockKey);
                    List<Object> results = transaction.exec();
                    if (results == null) {
                        continue;
                    }
                    retFlag = true;
                }
                conn.unwatch();
                break;
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retFlag;
    }
}

测试

下面就用一个简单的例子测试刚才实现的分布式锁。
例子中使用50个线程模拟秒杀一个商品,使用--运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;

/**
 * Created by liuyang on 2017/4/20.
 */
public class Service {
    private static JedisPool pool = null;

    static {
        JedisPoolConfig config = new JedisPoolConfig();
        // 设置最大连接数
        config.setMaxTotal(200);
        // 设置最大空闲数
        config.setMaxIdle(8);
        // 设置最大等待时间
        config.setMaxWaitMillis(1000 * 100);
        // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的
        config.setTestOnBorrow(true);
        pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
    }

    DistributedLock lock = new DistributedLock(pool);

    int n = 500;

    public void seckill() {
        // 返回锁的value值,供释放锁时候进行判断
        String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
        System.out.println(Thread.currentThread().getName() + "获得了锁");
        System.out.println(--n);
        lock.releaseLock("resource", indentifier);
    }
}

// 模拟线程进行秒杀服务

public class ThreadA extends Thread {
    private Service service;

    public ThreadA(Service service) {
        this.service = service;
    }

    @Override
    public void run() {
        service.seckill();
    }
}

public class Test {
    public static void main(String[] args) {
        Service service = new Service();
        for (int i = 0; i < 50; i++) {
            ThreadA threadA = new ThreadA(service);
            threadA.start();
        }
    }
}

结果如下,结果为有序的。

若注释掉使用锁的部分

public void seckill() {
    // 返回锁的value值,供释放锁时候进行判断
    //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
    System.out.println(Thread.currentThread().getName() + "获得了锁");
    System.out.println(--n);
    //lock.releaseLock("resource", indentifier);
}

从结果可以看出,有一些是异步进行的。

在分布式环境中,对资源进行上锁有时候是很重要的,比如抢购某一资源,这时候使用分布式锁就可以很好地控制资源。
当然,在具体使用中,还需要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁也只是一种简单的实现,主要是一种思想。

下一次我会使用zookeeper实现分布式锁,使用zookeeper的可靠性是要大于使用redis实现的分布式锁的,但是相比而言,redis的性能更好。

上面的代码可以在我的GitHub中进行查看,地址如下:
https://github.com/yangliu0/DistributedLock


### Redis 分布式锁的实现方式、使用方法及最佳实践 #### ### 1. Redis 分布式锁的基本原理 Redis 分布式锁的核心思想是利用 Redis 的原子性操作来确保锁的唯一性。通过 Redis 的 `SET` 命令,结合参数 `NX` 和 `EX`,可以在多线程环境下实现加锁和解锁的功能[^1]。此外,为了提高可用性,还可以采用 RedLock 算法或多实例部署的方式。 #### ### 2. Redis 分布式锁的实现方式 #### #### 2.1 单实例 Redis 实现分布式锁 单实例 Redis 实现分布式锁是最简单的实现方式。通过以下命令完成加锁和解锁操作: ```python import time import redis # 初始化 Redis 客户端 client = redis.StrictRedis(host='localhost', port=6379, db=0) lock_key = "distributed_lock" lock_value = "unique_identifier" # 加锁操作 def acquire_lock(): result = client.set(lock_key, lock_value, nx=True, ex=10) # 设置过期时间为 10 秒 return result is not None # 解锁操作 def release_lock(): script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ client.eval(script, 1, lock_key, lock_value) ``` 上述代码中,`nx=True` 确保只有当键不存在时才设置键值对,从而实现加锁功能。`ex=10` 参数为锁设置了 10 秒的过期时间,防止死锁的发生[^1]。 #### #### 2.2 多实例 Redis 实现分布式锁(RedLock 算法) 在高可用场景下,可以使用 RedLock 算法实现分布式锁。RedLock 算法通过多个 Redis 实例来确保锁的可靠性。以下是 RedLock 的伪代码实现: ```python import redis import time class RedLock: def __init__(self, redis_nodes): self.redis_nodes = [redis.StrictRedis(**node) for node in redis_nodes] def acquire_lock(self, lock_key, lock_value, ttl): quorum = len(self.redis_nodes) // 2 + 1 start_time = time.time() success_count = 0 for node in self.redis_nodes: if node.set(lock_key, lock_value, nx=True, px=ttl): success_count += 1 elapsed_time = time.time() - start_time validity_time = ttl - int(elapsed_time * 1000) if success_count >= quorum and validity_time > 0: return True, validity_time else: self.release_lock(lock_key, lock_value) return False, 0 def release_lock(self, lock_key, lock_value): for node in self.redis_nodes: try: script = """ if redis.call("get", KEYS[1]) == ARGV[1] then return redis.call("del", KEYS[1]) else return 0 end """ node.eval(script, 1, lock_key, lock_value) except Exception: pass ``` RedLock 算法要求在大多数 Redis 实例上成功加锁,并且整个过程的时间小于锁的有效期,才能认为加锁成功[^3]。 #### ### 3. Redis 分布式锁的最佳实践 #### #### 3.1 设置合理的锁超时时间 为了避免死锁问题,必须为锁设置一个合理的超时时间。如果锁持有者在超时时间内未完成任务,锁将自动释放[^1]。 #### #### 3.2 使用唯一的锁标识符 在加锁时,应为每个锁分配一个唯一的标识符(如 UUID),以便在解锁时验证锁的拥有者身份,防止误删其他线程的锁[^3]。 #### #### 3.3 防止 GC 停顿导致锁失效 Java 程序中的垃圾回收(GC)可能导致线程长时间暂停,从而使锁提前释放。为了解决这一问题,可以使用续租机制,在锁即将到期时主动延长锁的有效期。 #### #### 3.4 监控锁的竞争情况 在高并发场景下,可以通过监控锁的竞争情况来优化系统性能。例如,记录加锁失败的次数或等待时间,分析是否存在锁争用问题[^1]。 #### ### 4. 示例代码:基于 Redisson 的分布式锁实现 Redisson 是一个成熟的 Redis 客户端库,提供了丰富的分布式锁功能。以下是使用 Redisson 实现分布式锁的示例代码: ```java import org.redisson.Redisson; import org.redisson.api.RLock; import org.redisson.api.RedissonClient; import org.redisson.config.Config; public class RedissonLockExample { public static void main(String[] args) throws InterruptedException { Config config = new Config(); config.useSingleServer().setAddress("redis://127.0.0.1:6379"); RedissonClient redisson = Redisson.create(config); RLock lock = redisson.getLock("myDistributedLock"); lock.lock(); // 加锁 try { // 执行业务逻辑 System.out.println("Lock acquired, performing task..."); Thread.sleep(1000); // 模拟任务执行 } finally { lock.unlock(); // 解锁 System.out.println("Lock released."); } redisson.shutdown(); } } ``` Redisson 提供了多种锁类型,包括公平锁、可重入锁和红锁(RedLock),开发者可以根据实际需求选择合适的锁类型[^3]。 #### ### 5. 注意事项 - 在高并发场景下,应尽量减少锁的粒度,避免因锁竞争导致性能下降。 - 如果 Redis 实例发生故障,可能会导致锁丢失。因此,在关键业务场景下,建议使用哨兵模式或集群模式来提高 Redis 的可用性[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值