POJ 1459 :Power Network:最大流算法

本文深入探讨了信息技术领域的核心概念,包括但不限于前端开发、后端开发、移动开发、游戏开发、大数据开发等,详细介绍了各类技术的原理、应用案例及最新发展趋势,旨在为读者提供全面的技术视野。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Power Network
Time Limit: 2000MS Memory Limit: 32768K
Total Submissions: 23318 Accepted: 12213

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l max(u,v) of power delivered by u to v. Let Con=Σ uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source


最大流处女题~~
该题目虽然不是赤裸裸的最大流应用,但是转化非常简单。单独设立源点S和汇点T,由源点S发出单向边指向生产节点,边的容量 是作为边终点的生产者的生产能力P(x);所有的消费者都发出一条边指向汇点T,边的容量是消费者的消费能力C(x)。每个节点指向自身的边可以忽略,因为,自身流向自身没有意义。这样图里面的所有边都转化成中间传输节点,只有源点S和汇点T。问题就转化成了,由源点到汇点的最大流。该题目还有一个变化:由x指向y的边的最大流量和由y指向x的边不一样,也就是说,该图是有向图。那么构建残余图的时候,初始化逆流量不再是0,而是有设定数值,其他完全一样。
通过标准的最大流算法,BFS搜索增广路径,就是传说中的赤裸的SAP算法,一次AC。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int n,np,nc,m,sum;
int a[105][105],cai[105][105],use[105],pre[105],tmin;
char tem[10];
void init()
{
	int i,j;
	int x,y,value;
	memset(a,0,sizeof(a));
	memset(cai,0,sizeof(cai));
	memset(use,0,sizeof(use));
	memset(pre,0,sizeof(pre));
	for(i=0;i<m;i++)
	{
		scanf("%s",tem);
		sscanf(tem,"(%d,%d)%d",&x,&y,&value);
		if(x!=y)
		cai[x+1][y+1]=a[x+1][y+1]=value;
	}
	for(i=0;i<np;i++)
	{
		scanf("%s",tem);
		sscanf(tem,"(%d)%d",&x,&value);
		cai[0][x+1]=a[0][x+1]=value;
	}
	for(i=0;i<nc;i++)
	{
		scanf("%s",tem);
		sscanf(tem,"(%d)%d",&x,&value);
		cai[x+1][n+1]=a[x+1][n+1]=value;
	}
    sum=0;
}
int bfs()
{
	int i,j;
	int que[1000],head,end;
	int index;
	head=end=0;
	memset(use,0,sizeof(use));
	memset(pre,0,sizeof(pre));
	que[end++]=0;
	use[0]=1;
	while(head<end)
	{
		index=que[head++];
		if(cai[index][n+1])
		{
			pre[n+1]=index;
			return 1;
		}
		for(i=1;i<=n;i++)
		{
			if(!use[i]&&cai[index]
			[i])
			{
				que[end++]=i;
				use[i]=1;
				pre[i]=index;
			}
		}
	}
	return 0;
}
void update()
{
	int i,j;
	int q,pq;
	q=n+1;
	tmin=10000;
	while(q)
	{
		pq=pre[q];
		if(cai[pq][q]<tmin)
			tmin=cai[pq][q];
		q=pq;
	}
	sum+=tmin;
	q=n+1;
	while(q)
	{
		pq=pre[q];
		cai[pq][q]-=tmin;
		cai[q][pq]+=tmin;
		q=pq;
	}
}
int main()
{
	int i,j;
	while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF)
	{
		init();
		while(bfs())
		{
			update();
		}
		printf("%d\n",sum);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值