二叉树的实现

typedef char BTDataType;

typedef struct BinaryTreeNode
{
BTDataType _data;
struct BinaryTreeNode* _left;
struct BinaryTreeNode* _right;
}BTNode;

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* BinaryTreeCreate(BTDataType* a, int n, int* pi);
// 二叉树销毁
void BinaryTreeDestory(BTNode** root);
// 二叉树节点个数
int BinaryTreeSize(BTNode* root);
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root);
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
// 二叉树查找值为x的节点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
// 二叉树前序遍历
void BinaryTreePrevOrder(BTNode* root);
// 二叉树中序遍历
void BinaryTreeInOrder(BTNode* root);
// 二叉树后序遍历
void BinaryTreePostOrder(BTNode* root);
// 层序遍历
void BinaryTreeLevelOrder(BTNode* root);
// 判断二叉树是否是完全二叉树
int BinaryTreeComplete(BTNode* root);

#include"BinayrTreeNode.h"

BTNode *BinaryTreeCreate(BTDataType * src, int n, int* pi) {
	if (src[*pi] == '#' || *pi >= n)
	{
		(*pi)++;
		return NULL;
	}
	BTNode * cur = (BTNode *)malloc(sizeof(BTNode));
	cur->_data = src[*pi];
	(*pi)++;
	cur->_left = BinaryTreeCreateExe(src);
	cur->_right = BinaryTreeCreateExe(src);
	return cur;
}

void BinaryTreePrevOrder(BTNode* root) {
	if (root)
	{
		putchar(root->_data);
		BinaryTreePrevOrder(root->_left);
		BinaryTreePrevOrder(root->_right);
	}
}
void BinaryTreeInOrder(BTNode* root) {
	if (root)
	{
		BinaryTreeInOrder(root->_left);
		putchar(root->_data);
		BinaryTreeInOrder(root->_right);
	}
}
void BinaryTreePostOrder(BTNode* root) {
	if (root)
	{
		BinaryTreePostOrder(root->_left);
		BinaryTreePostOrder(root->_right);
		putchar(root->_data);
	}
}

void BinaryTreeDestory(BTNode** root) {
	if (*root)
	{
		BinaryTreeDestory((*root)->_left);
		BinaryTreeDestory((*root)->_right);
		free(*root);
		*root = NULL;
	}
}

//二叉树的节点个数
int BinaryTreeSize(BTNode* root)
{//相当于后序遍历  算法为遍历左子树加右子树+1
	if (root == NULL)
		return 0;
	return BinaryTreeSize(root->_left) +
		BinaryTreeSize(root->_right) + 1;
}
// 二叉树叶子节点个数
int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	else if (root->_left == NULL && root->_right == NULL)
		return 1;
	else
		return BinaryTreeLeafSize(root->_left) +
		BinaryTreeLeafSize(root->_right);
}
// 二叉树第k层节点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{
	if (k == 0 || root == NULL)
		return 0;
	else if (k == 1)
		return 1;
	else
		return BinaryTreeLevelKSize(root->_left, k - 1) +
		BinaryTreeLevelKSize(root->_right, k - 1);
}
【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值