Building OpenNI using a cross-compiler

本文详细介绍如何使用跨编译器为特定平台如ARM构建OpenNI。步骤包括定义环境变量,运行RedistMaker进行编译并创建重发包,以及安装关键文件到目标文件系统。此外,还提供了手动构建包及MonoWrappers的方法。

转自:https://www.douban.com/note/423014679/

Building OpenNI using a cross-compiler:
                1) Make sure to define two environment variables:
                   - <platform>_CXX - the name of the cross g++ for platform <platform>
                   - <platform>_STAGING - a path to the staging dir (a directory which simulates the target root filesystem).
                   Note that <platform> should be upper cased.
                   For example, if wanting to compile for ARM from a x86 machine, ARM_CXX and ARM_STAGING should be defined.
                2) Go into the directory: "Platform/Linux/CreateRedist".
                   Run: "./RedistMaker <platform>" (for example: "./RedistMake Arm").
                   This will compile everything and create a redist package in the "Platform/Linux/Redist" directory.
                   It will also create a distribution in the "Platform/Linux/CreateRedist/Final" directory.
                3) To install OpenNI files on the target file system:
                   Go into the directory: "Platform/Linux/Redist".
                   Run the script: "./install.sh -c $<platform>_STAGING" (for example: "./install.sh -c $ARM_STAGING").

                     The install script copies key files to the following location:
                       Libs into: STAGING/usr/lib
                       Bins into: STAGING/usr/bin
                       Includes into: STAGING/usr/include/ni
                       Config files into: STAGING/var/lib/ni
                        
                To build the package manually, you can run "make PLATFORM=<platform>" in the "Platform\Linux\Build" directory.
                If you wish to build the Mono wrappers, also run "make PLATFORM=<platform> mono_wrapper" and "make PLATFORM=<platform> mono_samples".

 

 

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值