数据分析师常见的十道面试题目

本文列举了数据分析师常遇到的十大面试问题,包括如何从海量日志中找出访问百度次数最多的IP、如何在内存限制下找出最热门的查询串、处理大文件中的高频词、查询频度排序、URL匹配、不重复整数查找等。通过分而治之、哈希映射、堆排序、Bloom Filter等方法,提供了高效解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据分析师常见的10道面试题及解答

1、海量日志数据,提取出某日访问百度次数最多的那个IP

  首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP32位的,最多有个2^32IP。同样可以采用映射的方法,比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

  或者如下阐述:

  算法思想:分而治之+Hash

1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;

2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)24值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MBIP地址;

3.对于每一个小文件,可以构建一个IPkey,出现次数为&#118alueHash map,同时记录当前出现次数最多的那个IP地址;

4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP

2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

  假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G

  典型的Top K算法,还是在这篇文章里头有所阐述,

  文中,给出的最终算法是:

  第一步、先对这批海量数据预处理,在ON)的时间内用Hash表完成统计(之前写成了排序,特此订正。July2011.04.27);

  第二步、借助堆这个数据结构,找出Top K,时间复杂度为NlogK

  即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比所以,我们最终的时间复杂度是:ON + N*O

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值