Elasticsearch——Term vector API详解

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO

联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬

学习必须往深处挖,挖的越深,基础越扎实!

阶段1、深入多线程

阶段2、深入多线程设计模式

阶段3、深入juc源码解析


阶段4、深入jdk其余源码解析


阶段5、深入jvm源码解析

码哥源码部分

码哥讲源码-原理源码篇【2024年最新大厂关于线程池使用的场景题】

码哥讲源码【炸雷啦!炸雷啦!黄光头他终于跑路啦!】

码哥讲源码-【jvm课程前置知识及c/c++调试环境搭建】

​​​​​​码哥讲源码-原理源码篇【揭秘join方法的唤醒本质上决定于jvm的底层析构函数】

码哥源码-原理源码篇【Doug Lea为什么要将成员变量赋值给局部变量后再操作?】

码哥讲源码【你水不是你的错,但是你胡说八道就是你不对了!】

码哥讲源码【谁再说Spring不支持多线程事务,你给我抽他!】

终结B站没人能讲清楚红黑树的历史,不服等你来踢馆!

打脸系列【020-3小时讲解MESI协议和volatile之间的关系,那些将x86下的验证结果当作最终结果的水货们请闭嘴】

Term向量

词项向量(term vector)是有elasticsearch在index document的时候产生,其包含对document解析过程中产生的分词的一些信息,例如分词在字段值中的位置、开始和结束的字符位置、分词的元数据payloads等;

term vector是单独进行存储的,会额外多占用一杯的空间,所以elasticsearch默认情况下禁用词项向量,如果要启用,我们需要在字段的mapping中使用term_vector进行设置;

1、term_vector的配置选项

配置选项 描述
no 不启用termvector,默认值
yes 启用termvector,但是仅记录分词
with_positions 启用termvector,记录分词及分词在字符串中的位置
with_offsets 启用termvector,记录分词在字符串中的起始字符位置
with_positions_offsets 启用termvector,记录分词在字符串中的位置及起始的字符位置
with_positions_payloads 启用termvector,记录分词在字符串中的位置及payloads
with_positions_offsets_payloads 启用termvector,记录分词在字符串中的位置、起始字符位置及payloads
    PUT /twitter
    { "mappings": {
        "properties": {
          "text": {
            "type": "text",
            "term_vector": "with_positions_offsets_payloads",
            "store" : true,
            "analyzer" : "fulltext_analyzer"
           },
           "fullname": {
            "type": "text",
            "term_vector": "with_positions_offsets_payloads",
            "analyzer" : "fulltext_analyzer"
          }
        }
      },
      "settings" : {
        "index" : {
          "number_of_shards" : 1,
          "number_of_replicas" : 0
        },
        "analysis": {
          "analyzer": {
            "fulltext_analyzer": {
              "type": "custom",
              "tokenizer": "whitespace",
              "filter": [
                "lowercase",
                "type_as_payload"
              ]
            }
          }
        }
      }
    }

将以下两个document发送到elasticsearch进行index:

    PUT /twitter/_doc/1
    {
      "fullname" : "John Doe",
      "text" : "twitter test test test "
    }
    
    PUT /twitter/_doc/2?refresh=wait_for
    {
      "fullname" : "Jane Doe",
      "text" : "Another twitter test ..."
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值