矩形无重叠覆盖

作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO

联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬

学习必须往深处挖,挖的越深,基础越扎实!

阶段1、深入多线程

阶段2、深入多线程设计模式

阶段3、深入juc源码解析

阶段4、深入jdk其余源码解析


阶段5、深入jvm源码解析

码哥源码部分

码哥讲源码-原理源码篇【2024年最新大厂关于线程池使用的场景题】

码哥讲源码【炸雷啦!炸雷啦!黄光头他终于跑路啦!】

码哥讲源码-【jvm课程前置知识及c/c++调试环境搭建】

​​​​​​码哥讲源码-原理源码篇【揭秘join方法的唤醒本质上决定于jvm的底层析构函数】

码哥源码-原理源码篇【Doug Lea为什么要将成员变量赋值给局部变量后再操作?】

码哥讲源码【你水不是你的错,但是你胡说八道就是你不对了!】

码哥讲源码【谁再说Spring不支持多线程事务,你给我抽他!】

终结B站没人能讲清楚红黑树的历史,不服等你来踢馆!

打脸系列【020-3小时讲解MESI协议和volatile之间的关系,那些将x86下的验证结果当作最终结果的水货们请闭嘴】

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

连续出斐波那契数列的题目,这出题的人竟然这么喜欢它,现在看到斐波那契的题目直接通项公式得出结果,不做多余操作,因为没有什么能比的上时间复杂度1的程序了:

     public  int RectCover(int target) {
        	if(target==0) {
        		return 0;
        	}
        	double x1=Math.pow((1+Math.sqrt(5))/2, target+1);
        	double x2=Math.pow((1-Math.sqrt(5))/2, target+1);
        	double number=(x1-x2)/Math.sqrt(5);
    		return (int)number;
        }

总结:对于斐波那契数列的出现的最基本的条件(只要是斐波那契数列就一定符合下面条件,符合下面条件的不一定是斐波那契数列):

1.只有两个改变条件;

2.状态为++的方式递增;

3.求的是一共有多少种方式;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值