Unet++网络结构代码(pytorch)

网络结构图如下:
在这里插入图片描述

import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter

class VGGBlock(nn.Module):
    def __init__(self, in_channels, middle_channels, out_channels):
        super().__init__()
        self.relu = nn.ReLU(inplace=True)
        self.conv1 = nn.Conv2d(in_channels, middle_channels, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(middle_channels)
        self.conv2 = nn.Conv2d(middle_channels, out_channels, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(out_channels)

    def forward(self, x):
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        return out

class Up(nn.Module):
    """Upscaling and concat"""

    def __init__(self):
        super().__init__()
        self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)

    def forward(self, x1, x2):
        x1 = self.up(x1)
        # input is CHW
        diffY = torch.tensor([x2.size()[2] - x1.size()[2]])
        diffX =
UNet是一种流行的卷积神经网络结构,专用于图像分割任务。在PyTorch中实现UNet需要导入必要的库,构建编码器解码器结构,并训练模型。下面是一个简化的UNet代码示例: ```python import torch import torch.nn as nn from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder from torchvision.transforms import ToTensor # 定义UNet的基本模块 class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dropout_rate=0.5): super(UNetBlock, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding), nn.BatchNorm2d(out_channels), nn.ReLU(), nn.Dropout(dropout_rate) ) self.decoder = nn.Sequential( nn.ConvTranspose2d(out_channels, in_channels // 2, kernel_size, stride, padding), nn.BatchNorm2d(in_channels // 2), nn.ReLU(), nn.Dropout(dropout_rate) ) def forward(self, x): x1 = self.encoder(x) return self.decoder(x1) # 全局定义UNet class UNet(nn.Module): def __init__(self, num_classes): super(UNet, self).__init__() self.down1 = UNetBlock(3, 64) # 输入通道数为3 (RGB), 输出通道数为64 self.pool1 = nn.MaxPool2d(2, 2) self.down2 = UNetBlock(64, 128) self.pool2 = nn.MaxPool2d(2, 2) self.down3 = UNetBlock(128, 256) self.pool3 = nn.MaxPool2d(2, 2) self.center = UNetBlock(256, 512) self.up3 = UNetBlock(512 + 256, 256) self.up2 = UNetBlock(256 + 128, 128) self.up1 = UNetBlock(128 + 64, 64) self.outconv = nn.Conv2d(64, num_classes, 1) def forward(self, x): x1 = self.down1(x) x2 = self.pool1(x1) x3 = self.down2(x2) x4 = self.pool2(x3) x5 = self.down3(x4) x = self.pool3(x5) x = self.center(x) x = torch.cat((x5, x), dim=1) x = self.up3(x) x = torch.cat((x4, x), dim=1) x = self.up2(x) x = torch.cat((x3, x), dim=1) x = self.up1(x) x = self.outconv(x) return x # 示例用法 num_classes = 2 # 二分类问题,比如前景和背景 model = UNet(num_classes) # 加载数据、设置优化器、损失函数等并开始训练... ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值