Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
Analysis: Note that AbstractList and Integer classes have overridden the equals() method, so in the code below, if(!res.contians(clone)) res.add(clone); can be used to de-dup.
The algorithm for this problem is almost the same as the Combination Sum problem, except equals test mentioned above.
public class Solution {
public void combinationSum2(int[] num, int index, int target, ArrayList<ArrayList<Integer>> res, ArrayList<Integer> tem) {
if(target == 0) {
ArrayList<Integer> clone = new ArrayList<Integer>(tem);
if(!res.contains(clone)) res.add(clone);
return;
}
int i = index;
while(i<num.length && target-num[i]>=0) {
tem.add(num[i]);
combinationSum2(num, i+1, target-num[i], res, tem);
tem.remove(tem.size()-1);
i++;
}
return;
}
public ArrayList<ArrayList<Integer>> combinationSum2(int[] num, int target) {
ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>();
ArrayList<Integer> tem = new ArrayList<Integer>();
Arrays.sort(num);
combinationSum2(num, 0, target, res, tem);
return res;
}
}