Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
public class Solution {
public int findLowerBound(int[] A, int target) {
int low=0, high=A.length-1;
while(low < high) {
int mid = (low+high)/2+1;
if(A[mid]==target) return mid;
else if(A[mid]>target) high=mid-1;
else if(A[mid]<target) low=mid;
}
return low;
}
public boolean binarySearch(int[] B, int target) {
int low=0, high=B.length-1;
while(low <= high) {
int mid = (low+high)/2;
if(B[mid]==target) return true;
else if(B[mid]>target) high=mid-1;
else if(B[mid]<target) low=mid+1;
}
return false;
}
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix.length==0) return false;
if(target<matrix[0][0]) return false;
int row=matrix.length, col=matrix[0].length;
int[] firstCol = new int[row];
for(int i=0; i<row; i++) {
firstCol[i] = matrix[i][0];
}
int lowerBound = findLowerBound(firstCol, target);
int[] searchRow = Arrays.copyOf(matrix[lowerBound], col);
return binarySearch(searchRow, target);
}
}