文章目录
一、算法原理
-
层次分析法(analytic hierarchy process),简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
-
传统定性分析方法类似专家打分、专家判断等,仅能将指标简单地划分为几个层级(类似非常重要、比较重要、一般、比较不重要、非常不重要),这样导致部分存在差别但是不大的指标得到了同样的权重,受主观因素影响,无法对最终决策做出更好的帮助。层次分析法将不同指标间一一比对,主观与客观相结合,很好地解决了以上问题。
-
判断矩阵量化值参照表:
| 因素i比因素j | 量化值 |
|---|---|
| 同等重要 | 1 |
| 稍微重要 | 3 |
| 较强重要 | 5 |
| 强烈重要 | 7 |
| 极端重要 | 9 |
| 两相邻判断的中间值 | 2,4,6,8 |
| 倒数 | 假设因素i相比因素j重要程度量化值为3,相反就是1/3 |
二、案例分析
目的:选择某个城市旅游
方案:南京、桂林、三亚
考虑因素:景色、吃住、价格、人文

2.1 构建指标层判断矩阵

构建判断矩阵,理论上需要专家打分。
2.2 求各指标权重
2.2.1 算术平均法(和积法)
-
按列求和:如 1 + 4 + 1 / 2 + 3 = 8.5 1+4+1/2+3 = 8.5 1+4+1/2+3=8.5。

-
将指标层判断矩阵按列归一化(即按列求占比),如:
0.12 = 1 / 8.5 0.12 = 1 / 8.5 0.12=1/8.5
0.47 = 4 / 8.5 0.47 = 4 / 8.5 0.47=4/8.5
0.06 = 1 / 2 / 8.5 0.06 = 1/2 / 8.5 0.06=1/2/8.5
0.35 = 3 / 8.5 0.35 = 3 / 8.5 0.35=3/8.5

-
将归一化后的矩阵按行求平均,得到权重向量w

2.2.2 几何平均法(方根法)
-
每行各元素相乘(行乘积),如 1 ∗ 1 / 4 ∗ 2 ∗ 1 / 3 = 0.1667 1*1/4*2*1/3 = 0.1667 1∗1/4∗2∗1/3=0.1667

-
对乘积列每个元素开n次方(n为矩阵阶数,此处n=4),如 0.1667 4 = 0.6389 \sqrt[4]{0.1667}=0.6389 40.1667=0.6389.

-
然后对开方列求列占比,得到权重向量w,如 0.1171 = 0.6389 / 5.4566 0.1171=0.6389 / 5.4566 0.1171=0.6389/5.4566.

2.3 一致性检验
2.3.1 求解最大特征根值
得到权重向量后,可以计算出原判断矩阵的最大特征根值,公式为:
λ m a x = 1 n ∑ i = 1 n ( A W i ) W i \lambda_{max}=\dfrac{1}{n}\sum_{i=1}^{n}{\dfrac{(AW_{i})}{W_{i}}} λmax=n1i

最低0.47元/天 解锁文章
2万+





