题意:。。
思路:
tot 物品总价值
f[i][j] 前i个物品价值为j时最小的概率
选择i得到的新概率: p[i] * (1-f[i-1][j - v[i]]) + f[i-1][j - v[i]]
//#include<bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cassert>
#include <algorithm>
#include <cmath>
#include <climits>
#include <set>
#include <map>
using namespace std;
#define SPEED_UP iostream::sync_with_stdio(false);
#define FIXED_FLOAT cout.setf(ios::fixed, ios::floatfield);
#define rep(i, s, t) for(int (i)=(s);(i)<=(t);++(i))
#define urep(i, s, t) for(int (i)=(s);(i)>=(t);--(i))
#define in_bound(l, r, i) (l)<=(i)&&(i)<(r)
#define pb push_back
typedef long long LL;
struct Edge{
int from, to, cost;
Edge(){}
Edge(int u, int v, int w):from(u), to(v), cost(w){}
};
const int Maxn = 100+5;
const int MaxEdge = 100000+5;
const int inf = INT_MAX/2;
int v[Maxn], n;
double f[Maxn][10005], p[Maxn], P;
int solve() {
int tot = 0;
rep(i, 1, n) tot += v[i];
rep(i, 0, tot) f[0][i] = 1.0;
//cout << "tot: " << tot << endl;
f[0][0] = 0;
rep(i, 1, n)
rep(j, 0, tot) {
f[i][j] = f[i-1][j];
if (j < v[i]) continue;
double tmp = p[i]*(1.0-f[i-1][j-v[i]])+f[i-1][j-v[i]];
if ( tmp < f[i][j] && tmp < P) {
f[i][j] = tmp;
//cout << "f: " << i << ' ' << j << endl;
}
}
int ans = 0;
rep(i, 1, tot)
if ( f[n][i] < P) {
ans = max(ans, i);
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.in", "r", stdin);
#endif
SPEED_UP
int t;
cin >> t;
while (t--) {
cin >> P >> n;
//cout << "n: " << n << endl;
rep(i, 1, n) cin >> v[i] >> p[i];
cout << solve() << endl;
}
return 0;
}