501C Misha and Forest
只要看出这是一个包含若干棵树的森林就好办了,从叶子开始删除。。
504B - Misha and Permutations Summation
Factorial number system 或者
康托展开 是 排列 和 十进制整数之间的双向映射,其值刚好就是排列的次序。
但是题目数据范围没办法直接做,但转换的中间结果可以表示在中 Factorial number system 中。。
因为在转换的时候,需要快速求 k是集合中第几大, 集合中第k大的数, 以及要从集合中删除数,所以可以用 BIT 或者 Treap
#include<bits/stdc++.h>
using namespace std;
#define SPEED_UP iostream::sync_with_stdio(false);
#define FIXED_FLOAT cout.setf(ios::fixed, ios::floatfield);
#define rep(i, s, t) for(int (i)=(s);(i)<=(t);++(i))
#define urep(i, s, t) for(int (i)=(s);(i)>=(t);--(i))
typedef long long LL;
const int Maxn = 200000 + 100;
#define lowbit(x) (x&(-x))
int c[Maxn], p[Maxn], q[Maxn], r[Maxn];
int n;
int sum(int x) {
int ret = 0;
while (x > 0) {
ret += c[x];
x -= lowbit(x);
}
return ret;
}
void update(int x, int v) {
while (x <= n) {
c[x] += v;
x += lowbit(x);
}
}
vector<int> Ord(int a[]) {
memset(c, 0, sizeof(c));
rep(i, 1, n) update(i, 1);
vector<int> ret;
rep(i, 0, n-1) {
ret.push_back(sum(a[i]+1) - 1);
update(a[i]+1, -1);
}
return ret;
}
int b_find(int k) {
int l = 1, r = n, mid;
while (l < r) {
mid = (r+l)/2;
int tmp = sum(mid);
if (tmp < k)
l = mid+1;
else
r = mid;
}
return l;
}
vector<int> Perm(int a[]) {
memset(c, 0, sizeof(c));
rep(i, 1, n) update(i, 1);
vector<int> ret;
rep(i, 0, n-1) {
//cout << "i: " << i << " find " << a[i]
int tmp = b_find(a[i]+1);
update(tmp, -1);
ret.push_back(tmp-1);
}
return ret;
}
void print(vector<int> & v) {
for (auto i:v) cout << i << ' ';cout << endl;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.in", "r", stdin);
#endif
SPEED_UP
cin >> n;
rep(i, 0, n-1) cin >> p[i];
rep(i, 0, n-1) cin >> q[i];
vector<int> ord1 = Ord(p);
vector<int> ord2 = Ord(q);
//cout << "p -> ";print(ord1);
//cout << "q -> ";print(ord2);
int z = 0;
urep(i, n-1, 0) {
z += ord1[i] + ord2[i];
r[i] = z % (n - i);
z /= (n-i);
}
//rep(i, 0, n-2) cout << r[i] << ' ';cout << r[n-1] << endl;
vector<int> ans = Perm(r);
rep(i, 0, n-2) cout << ans[i] << ' ';cout << ans[n-1] << endl;
return 0;
}
504C - Misha and Palindrome Degree
观察 = =
序列下标: 0 - n-1
首先,去掉首尾相等的部分,即 存在k, 所有 i < k, a[i] == a[n-i-1] , a[k] != a[n-k-1], L = k, R = n-1-k
所以,所求的 range 必然包含 L 或者 R
于是问题转换为求出 [L, R] 的最小前缀range 和最小后缀range,
++..+.L.....R+...++
可以用二分和O(n)方法
O(n) 方法是这样的, 可以再观察一下。。不论是前缀range还是后缀range,都存在一个上限,即[L, R]里的每一种元素,都有一半在range里面。可以先求出这个上限,然后缩减。
最后总的求和的时候,应用容斥原理就可以方便的求出来了 = =
#include<bits/stdc++.h>
using namespace std;
#define SPEED_UP iostream::sync_with_stdio(false);
#define FIXED_FLOAT cout.setf(ios::fixed, ios::floatfield);
#define rep(i, s, t) for(int (i)=(s);(i)<=(t);++(i))
#define urep(i, s, t) for(int (i)=(s);(i)>=(t);--(i))
typedef long long LL;
const int Maxn = ((int)1e5) + 100;
#define lowbit(x) (x&(-x))
int arr[Maxn], n;
map<int, int> num, numL, numR;
LL Solve(int a[]) {
int l = 0, r = n-1;
while (a[l] == a[r] && l < r) ++l, --r;
if (l >= r) return n * 1ll * (n+1)/2;
rep(i, l, r) num[a[i]] += 1;
int odds = 0, key = -1;
for (auto it = num.begin();it != num.end();++it)
if ( (it->second)&1 )
odds += 1, key = it->first;
if (odds > 1) return 0;
// 找最小前缀
int oks = 0, l2 = l-1;
while (oks < num.size()) {
numL[a[++l2]] += 1;
int _a = numL[a[l2]] << 1;
int _b = _a - 2, _c = num[a[l2]];
if ( _a >= _c && _b < _c ) ++oks;
}
oks = 0;
int r2 = r+1;
while (oks < num.size()) {
numR[a[--r2]] += 1;
int _a = numR[a[r2]] << 1;
int _b = _a - 2, _c = num[a[r2]];
if ( _a >= _c && _b < _c ) ++oks;
}
//cout << "be min prefix: " << l << ", " << l2 << " min suffix: " << r2 << ", " << r << endl;
int mid = (r+l)>>1;
if (l2 <= mid && ( !(n&1) || a[mid] == key )) {
int g, h;
if (n&1)
g = mid-1, h = mid+1;
else
g = mid, h = mid+1;
while (a[g] == a[h]) --g, ++h;
l2 = g, r2 = h;
}
//cout << "min prefix: " << l << ", " << l2 << " min suffix: " << r2 << ", " << r << endl;
LL sum = 0;
sum += (l+1) * 1ll * (n-l2);
sum += (n-r) * 1ll * (r2+1);
sum -= (l+1) * 1ll * (n-r);
return sum;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input.in", "r", stdin);
#endif
SPEED_UP
cin >> n;
rep(i, 0, n-1) cin >> arr[i];
cout << Solve(arr) << endl;
return 0;
}