网络赛的时候看出来 A(n,m) = sigma(A(i,m-1)) + A(0,m) (1<=i<=n), 但是没构造出来矩阵。。。
详细的题解这里已经有了
http://blog.youkuaiyun.com/u013654696/article/details/39273405
B为一个列矩阵, (a0-an)初始为第一列 系数矩阵为A 答案为 A^(m-1)*B
B = | 0 |
| a0 |
| a1 |
...
| an |
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cassert>
#include <algorithm>
#include <cmath>
#include <set>
#include <limits>
using namespace std;
#define MIN(a, b) a < b ? a : b
#define MAX(a, b) a > b ? a : b
#define F(i, n) for (int i=0;i<(n);++i)
#define REP(i, s, t) for(int i=s;i<=t;++i)
#define UREP(i, s, t) for(int i=s;i>=t;--i)
#define REPOK(i, s, t, o) for(int i=s;i<=t && o;++i)
#define MEM0(addr, size) memset(addr, 0, size)
#define LBIT(x) x&-x
#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398
#define MAXN 15
#define MAXM 10000
#define MOD 10000007
typedef long long LL;
const double maxdouble = numeric_limits<double>::max();
const double eps = 1e-10;
const int INF = 0x7FFFFFFF;
#define DEBUG
const int max_matrix_size = 15;
struct Matrix{
long long mat[max_matrix_size][max_matrix_size];
int _size;
Matrix(int n):_size(n) {memset(mat, 0, sizeof(mat));};
Matrix operator*(const Matrix &b)const{
Matrix ret(_size);
for(int i = 0;i < _size;i++)
for(int j = 0;j < _size;j++){
ret.mat[i][j] = 0;
for(int k = 0;k < _size;k++)
ret.mat[i][j] += mat[i][k]*b.mat[k][j]%MOD;
}
return ret;
}
};
Matrix pow_M(Matrix a,long long n) {
Matrix ret(a._size);
memset(ret.mat,0,sizeof(ret.mat));
for (int i=0;i<ret._size;++i)
ret.mat[i][i] = 1;
Matrix tmp = a;
while(n){
if(n&1) ret = ret*tmp;
tmp = tmp*tmp;
n >>= 1;
}
return ret;
}
int main() {
//freopen("input.in", "r", stdin);
int n, m;
while(scanf("%d%d",&n,&m) != EOF) {
Matrix A(n+2), B(n+2);
A.mat[0][0] = 1;
REP(i, 1, n+1) {
A.mat[i][0] = 3;
A.mat[i][1] = 10;
REP(j, 2, i)
A.mat[i][j] = 1;
}
B.mat[0][0] = 1;
B.mat[1][0] = 233;
REP(i, 2, n+1)
scanf("%d", &B.mat[i][0]);
if (m == 0) {
if (n == 0)
printf("0\n");
else
printf("%d\n",B.mat[n+1][0]);
continue;
}
REP(i, 2, n+1)
B.mat[i][0] = (B.mat[i-1][0]+B.mat[i][0])%MOD;
A = pow_M(A, m-1);
Matrix C = A * B;
cout << C.mat[n+1][0]%MOD << endl;
}
return 0;
}