uva That Nice Euler Circuit(计算几何 欧拉公式)

本文深入探讨了欧拉公式在多边形几何中的作用,并详细解释了如何通过数学推导将多边形展开成凸多边形。文章进一步阐述了如何计算线段之间的交点,以及如何利用`unique`操作去除重复点并进行在线段上的判断。通过实例代码展示了完整的实现过程,包括判重、排序、计算边数和顶点数的步骤,为读者提供了全面的理解和实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧拉公式:V+F-E=2

求V:

可以想象把多边形“展开”成为一个凸多边形,则至少n条边,n个顶点。

于是需要求的只有,线段之间两两的交点。

求E:

交点求出来后,去重,枚举判断是否在线段上,在的话新增一条线段。

PS:

    判重用到了unique:操作范围为[first, last),对于一段连续相等的区间只保留第一个元素,返回值为新的last。unique不改变容器性质,只改变内容。

   所以sort一下,再unique就轻松去重了。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
#include <cassert>
#include <algorithm>
#include <cmath>
#include <limits>
#include <set>
#include <map>

using namespace std;

#define MIN(a, b) a < b ? a : b
#define MAX(a, b) a > b ? a : b
#define F(i, n) for (int i=0;i<(n);++i)
#define REP(i, s, t) for(int i=s;i<=t;++i)
#define IREP(i, s, t) for(int i=s;i>=t;--i)
#define REPOK(i, s, t, o) for(int i=s;i<=t && o;++i)
#define MEM0(addr, size) memset(addr, 0, size)
#define LBIT(x) x&-x

#define PI 3.1415926535897932384626433832795
#define HALF_PI 1.5707963267948966192313216916398

#define MAXN 300
#define MAXM 100
#define MOD 20071027

typedef long long LL;

const double maxdouble = numeric_limits<double>::max();
const double eps = 1e-10;
const int INF = 0x7FFFFFFF;

struct Point {
    double x, y;
    Point(){};
    Point(double x, double y):x(x),y(y){};
};
typedef Point Vector;

Vector operator - (Point A, Point B) {
    return Vector(A.x-B.x, A.y - B.y);
}
Vector operator + (Point A, Point B) {
    return Vector(A.x+B.x, A.y+B.y);
}
Vector operator * (Vector A, double p) {
    return Vector(A.x*p, A.y*p);
}
int dcmp(double x) {
    if (fabs(x) < eps)
        return 0;
    else
        return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b) {
    if (dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0)
        return true;
    return false;
}
bool operator < (const Point& a, const Point& b) {
    return a.x < b.x || (a.x == b.x && a.y < b.y);
}
double Dot(Vector A, Vector B) {
    return A.x*B.x + A.y*B.y;
}
double Cross(Vector A, Vector B) {
    return A.x*B.y-A.y*B.x;
}
double Length(Vector A) {
    return sqrt(Dot(A, A));
}
double Area2(Point A, Point B, Point C) {
    return Cross(B-A, C-A);
}
double Angle(Vector A, Vector B) {
    return acos(Dot(A, B) / Length(A) / Length(B));
}
Vector Rotate(Vector A, double rad) {
    return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}
// 单位法线 左转90度后归一化
Vector Normal(Vector A) {
    double L = Length(A);
    return Vector(-A.y/L, A.x/L);
}
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) {
    Vector u = P - Q;
    double t = Cross(w, u) / Cross(v, w);
    return P + v*t;
}
bool SeqmentProperIntersection(Point a1, Point a2, Point b1, Point b2) {
    double c1 = Cross(a2-a1, b2-a1), c2 = Cross(a2-a1, b1-a1),
           c3 = Cross(b2-b1, a2-b1), c4 = Cross(b2-b1, a1-b1);
    if (dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0)
        return true;
    return false;
}
bool OnSegment(Point p, Point a1, Point a2) {
    return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
}
double cos_theorem(double edge1, double edge2, double edge3) {
    return acos((pow(edge1, 2.0) + pow(edge2, 2.0) - pow(edge3, 2.0)) / (2*edge1*edge2));
}

Point seq[MAXN + 1];
Point pts[MAXN * MAXN + 1];

int main()
{
    int N;
    int ncases = 0;

    while(scanf("%d", &N) == 1 && N) {
        int c, e;
        // 至少有 n 个顶点与 n 条边
        F(i, N) {
            scanf("%lf%lf",&seq[i].x, &seq[i].y);
            pts[i] = seq[i];
        }
        N--;
        c = N;
        e = N;
        REP(i, 0, N-1)
            REP(j, i+1, N-1)
                if (SeqmentProperIntersection(seq[i], seq[i+1], seq[j], seq[j+1]))
                    pts[c++] = GetLineIntersection(seq[i], seq[i+1] - seq[i], seq[j], seq[j+1] - seq[j]);
        sort(pts, pts+c);
        c = unique(pts, pts+c) - pts;
        REP(i, 0, N-1)
            REP(j, 0, c-1)
                if (OnSegment(pts[j], seq[i], seq[i+1]))
                    e++;
        ++ncases;
        printf("Case %d: There are %d pieces.\n", ncases, e-c+2);
    }

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值