【数据安全】连续数据突升检测

在数据监控领域,很多情况下需要对时序数据突增情况进行检测,下面记录简单的检测方法,仅供参考

import java.util.*;
import java.util.stream.Collectors;

public class AdaptiveSurgeDetector {
    public static class SurgePoint {
        String startTime;
        String endTime;
        double startValue;
        double endValue;
        double surgeRatio;
        boolean isConsecutive;
        int consecutiveCount;
        int minShowCount;

        public SurgePoint(String startTime, String endTime,
                          double startValue, double endValue, double surgeRatio,
                          boolean isConsecutive, int consecutiveCount, int minShowCount) {
            this.startTime = startTime;
            this.endTime = endTime;
            this.startValue = startValue;
            this.endValue = endValue;
            this.surgeRatio = surgeRatio;
            this.isConsecutive = isConsecutive;
            this.consecutiveCount = consecutiveCount;
            this.minShowCount = minShowCount;
        }

        @Override
        public String toString() {
            if (isConsecutive) {
                return String.format("连续突增[%s 至 %s]: 起始值=%.2f, 结束值=%.2f, 突增比例=%.2f%%, 持续=%d次",
                        startTime, endTime, startValue, endValue, surgeRatio, consecutiveCount);

            } else {
                return String.format("单点突增[%s]: 值=%.2f, 突增比例=%.2f%%",
                        startTime, startValue, surgeRatio);
            }
        }
    }

    /**
     * 检测方法
     *
     * @param timeSeriesData        时间序列Map对象
     * @param thresholdMultiplier   阈值
     * @param minShowCount          最小连续检测点
     * @param baselineSize          基础数据计算缓存大小
     * @return
     */
    public static List<SurgePoint> detectSurges(Map<String, Object> timeSeriesData,
                                                double thresholdMultiplier, Integer minShowCount, Integer baselineSize) {
        // 转换并排序数据
        List<Map.Entry<String, Double>> sortedData = timeSeriesData.entrySet().stream()
                .map(e -> new AbstractMap.SimpleEntry<>(e.getKey(), convertToDouble(e.getValue())))
                .sorted(Map.Entry.comparingByKey())
                .collect(Collectors.toList());

        List<SurgePoint> results = new ArrayList<>();
        List<Map.Entry<String, Double>> baselineData = new ArrayList<>();
        List<Map.Entry<String, Double>> surgeBuffer = new ArrayList<>();

        for (int i = 0; i < sortedData.size(); i++) {
            Map.Entry<String, Double> current = sortedData.get(i);

            // 第一个点作为初始基准
            if (i == 0) {
                baselineData.add(current);
                continue;
            }

            // 计算当前基准统计量
            double mean = calculateMean(baselineData);
            double stdDev = calculateStdDev(baselineData, mean);
            double threshold = stdDev > 0 ? thresholdMultiplier * stdDev : thresholdMultiplier * mean;
            double deviation = current.getValue() - mean;

            // 突增检测
            if (deviation > threshold) {
                surgeBuffer.add(current);
            } else {
                // 处理缓冲区的突增点
                if (!surgeBuffer.isEmpty()) {
                    processSurgeBuffer(surgeBuffer, baselineData, results, thresholdMultiplier, minShowCount);
                    surgeBuffer.clear();
                }

                // 当前点不是突增,添加到基准数据
                baselineData.add(current);
                // 保持基准数据大小不超过必要范围
                if (baselineData.size() > baselineSize) {
                    baselineData.remove(0);
                }
            }
        }

        // 处理最后可能的突增序列
        if (!surgeBuffer.isEmpty()) {
            processSurgeBuffer(surgeBuffer, baselineData, results, thresholdMultiplier, minShowCount);
        }

        return results;
    }

    private static void processSurgeBuffer(List<Map.Entry<String, Double>> surgeBuffer,
                                           List<Map.Entry<String, Double>> baselineData,
                                           List<SurgePoint> results,
                                           double thresholdMultiplier,
                                           Integer minShowCount) {
        if (surgeBuffer.size() == 1 && minShowCount == 1) {
            // 单点突增
            Map.Entry<String, Double> point = surgeBuffer.get(0);
            double mean = calculateMean(baselineData);
            double surgeRatio = ((point.getValue() - mean) / mean) * 100;
            if(surgeRatio > 30) {
                results.add(new SurgePoint(
                        point.getKey(),
                        point.getKey(),
                        point.getValue(),
                        point.getValue(),
                        surgeRatio,
                        false,
                        1,
                        minShowCount));
            }
        } else if(surgeBuffer.size() >= minShowCount) {
            // 连续突增
            double mean = calculateMean(baselineData);
            double avgSurgeRatio = surgeBuffer.stream()
                    .mapToDouble(e -> ((e.getValue() - mean) / mean) * 100)
                    .average()
                    .orElse(0);
            if(avgSurgeRatio > 30) {
                results.add(new SurgePoint(
                        surgeBuffer.get(0).getKey(),
                        surgeBuffer.get(surgeBuffer.size() - 1).getKey(),
                        surgeBuffer.get(0).getValue(),
                        surgeBuffer.get(surgeBuffer.size() - 1).getValue(),
                        avgSurgeRatio,
                        true,
                        surgeBuffer.size(),
                        minShowCount));
            }
        }
        // 重置基准数据
        baselineData.clear();
    }

    private static double convertToDouble(Object value) {
        if (value instanceof Number) {
            return ((Number) value).doubleValue();
        }
        try {
            return Double.parseDouble(value.toString());
        } catch (Exception e) {
            return 0.0;
        }
    }

    private static double calculateMean(List<Map.Entry<String, Double>> data) {
        return data.stream()
                .mapToDouble(Map.Entry::getValue)
                .average()
                .orElse(0);
    }

    private static double calculateStdDev(List<Map.Entry<String, Double>> data, double mean) {
        if (data.size() <= 1) return 0;
        double variance = data.stream()
                .mapToDouble(e -> Math.pow(e.getValue() - mean, 2))
                .average()
                .orElse(0);
        return Math.sqrt(variance);
    }


    public static void main(String[] args) {
        // 示例时间序列数据(包含单点突增和连续突增)
        Map<String, Object> timeSeriesData = new LinkedHashMap<>();
        timeSeriesData.put("2023-01-01 10:00", 10.0);
        timeSeriesData.put("2023-01-01 11:00", 10.0);
        timeSeriesData.put("2023-01-01 12:00", 50.0);
        timeSeriesData.put("2023-01-01 13:00", 13.0);
        timeSeriesData.put("2023-01-01 14:00", 12.0);
        timeSeriesData.put("2023-01-01 15:00", 10.0);
        timeSeriesData.put("2023-01-01 16:00", 11.0);
        timeSeriesData.put("2023-01-01 17:00", 16.0);
        timeSeriesData.put("2023-01-01 18:00", 100.0);
        timeSeriesData.put("2023-01-01 19:00", 10.0);
        timeSeriesData.put("2023-01-01 20:00", 140.0);
        timeSeriesData.put("2023-01-01 21:00", 110.0);
        timeSeriesData.put("2023-01-01 22:00", 110.0);
        timeSeriesData.put("2023-01-01 23:00", 110.0);
        timeSeriesData.put("2023-01-02 00:00", 60.0);
        timeSeriesData.put("2023-01-02 01:00", 22.0);
        timeSeriesData.put("2023-01-02 02:00", 25.0);
        timeSeriesData.put("2023-01-02 03:00", 28.0);


        Double threshold = 2.0;
        Integer miShowCount = 1;
        Integer baselineSize = 5;
        List<SurgePoint> surges = detectSurges(timeSeriesData, threshold, miShowCount, baselineSize);

        // 输出结果
        System.out.println("时间序列数据分析结果:");
        if (surges.isEmpty()) {
            System.out.println("未检测到明显突增点");
        } else {
            surges.forEach(System.out::println);
        }
    }
}

结果:

时间序列数据分析结果:
单点突增[2023-01-01 12:00]: 值=50.00, 突增比例=400.00%
连续突增[2023-01-01 17:00 至 2023-01-01 18:00]: 起始值=16.00, 结束值=100.00, 突增比例=404.35%, 持续=2次
连续突增[2023-01-01 20:00 至 2023-01-02 00:00]: 起始值=140.00, 结束值=60.00, 突增比例=960.00%, 持续=5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值