uva 11552 DP

本文介绍了一种算法,用于解决将字符串按指定长度分组,并计算每组字符最少需要改变多少字符才能使得每组中所有字符相同的问题。通过动态规划实现,优化了计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
char str[1010];
bool vis[200];
int dp[1010][1010];
int main()
{
	int T,k;
	scanf("%d",&T);
	while(T--)
	{
		memset(dp,0x3f,sizeof(dp)); 
		scanf("%d%s",&k,str);
		int len=strlen(str);
		for(int i=0;i<len/k;i++)
		{
			int t=0;
			memset(vis,0,sizeof(vis));
			for(int j=i*k;j<(i+1)*k;j++)
			vis[str[j]]=1;
			for(int j='a';j<='z';j++)
			if(vis[j])
			t++;
			if(i==0)
			{
			    for(int j=0;j<k;j++)
			    dp[i][j]=t;
			    continue;
			}
			for(int j=0;j<k;j++)
			{
				int l=i*k+j;
				for(int p=0;p<k;p++)
				{
					int r=(i-1)*k+p;
					if(vis[str[r]]&&(t==1||str[l]!=str[r]))
					dp[i][j]=min(dp[i][j],dp[i-1][p]+t-1);
					else
					dp[i][j]=min(dp[i][j],dp[i-1][p]+t);
				}
			}			
		}
		int res=INF;
		for(int i=0;i<k;i++)
		res=min(res,dp[len/k-1][i]);
		printf("%d\n",res);
	}
}

标题基于SpringBoot+Vue的社区便民服务平台研究AI更换标题第1章引言介绍社区便民服务平台的研究背景、意义,以及基于SpringBoot+Vue技术的研究现状和创新点。1.1研究背景与意义分析社区便民服务的重要性,以及SpringBoot+Vue技术在平台建设中的优势。1.2国内外研究现状概述国内外在社区便民服务平台方面的发展现状。1.3研究方法与创新点阐述本文采用的研究方法和在SpringBoot+Vue技术应用上的创新之处。第2章相关理论介绍SpringBoot和Vue的相关理论基础,以及它们在社区便民服务平台中的应用。2.1SpringBoot技术概述解释SpringBoot的基本概念、特点及其在便民服务平台中的应用价值。2.2Vue技术概述阐述Vue的核心思想、技术特性及其在前端界面开发中的优势。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue如何有效整合,以提升社区便民服务平台的性能。第3章平台需求分析与设计分析社区便民服务平台的需求,并基于SpringBoot+Vue技术进行平台设计。3.1需求分析明确平台需满足的功能需求和性能需求。3.2架构设计设计平台的整体架构,包括前后端分离、模块化设计等思想。3.3数据库设计根据平台需求设计合理的数据库结构,包括数据表、字段等。第4章平台实现与关键技术详细阐述基于SpringBoot+Vue的社区便民服务平台的实现过程及关键技术。4.1后端服务实现使用SpringBoot实现后端服务,包括用户管理、服务管理等核心功能。4.2前端界面实现采用Vue技术实现前端界面,提供友好的用户交互体验。4.3前后端交互技术探讨前后端数据交互的方式,如RESTful API、WebSocket等。第5章平台测试与优化对实现的社区便民服务平台进行全面测试,并针对问题进行优化。5.1测试环境与工具介绍测试
### 问题分析 UVA12099 **The Bookcase** 是一个典型的动态规划问题,涉及将多个书籍放入书架,要求最小化书架的总高度。问题的核心是: - 给定一组书籍,每个书籍具有固定的宽度和高度。 - 书架的宽度有限,书籍必须按照顺序放置,且每层书架的总宽度不能超过限制。 - 每层书架的高度是该层中所有书籍的最大高度。 - 任务是安排书籍的分布,使得书架的总高度最小化。 ### 动态规划思路 该问题可以通过动态规划求解。定义状态 `dp[i]` 表示前 `i` 本书的最小总高度。 为了优化状态转移,可以使用如下策略: - 预处理计算每本书到另一本书之间的最大高度。 - 状态转移方程为: `dp[i] = min(dp[j] + max_height(j+1..i))`,其中 `j < i` 且 `sum_width(j+1..i) <= shelf_width`。 ### C++ 实现 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <climits> using namespace std; int minTotalHeight(const vector<int>& heights, const vector<int>& widths, int shelfWidth) { int n = heights.size(); vector<int> dp(n + 1, 0); // dp[i] 表示前i本书的最小总高度 dp[0] = 0; for (int i = 1; i <= n; ++i) { int max_height = 0; int total_width = 0; dp[i] = INT_MAX; for (int j = i - 1; j >= 0; --j) { total_width += widths[j]; if (total_width > shelfWidth) break; max_height = max(max_height, heights[j]); dp[i] = min(dp[i], dp[j] + max_height); } } return dp[n]; } int main() { // 示例输入 vector<int> heights = {3, 4, 2}; vector<int> widths = {6, 5, 8}; int shelfWidth = 10; int result = minTotalHeight(heights, widths, shelfWidth); cout << "Minimum total shelf height: " << result << endl; return 0; } ``` ### 实现说明 - `heights` 和 `widths` 分别表示每本书的高度和宽度。 - `shelfWidth` 是书架的宽度限制。 - `dp[i]` 记录了前 `i` 本书的最小总高度。 - 内层循环用于尝试不同的分段方式,计算当前层的最大高度,并更新 `dp[i]`。 ### 时间复杂度 - 该算法的时间复杂度为 $O(n^2)$,其中 $n$ 是书籍的数量。 - 对于较小的数据规模(如 $n \leq 1000$),该算法可以高效运行。 ### 优化思路 - 如果书籍数量较大,可以考虑使用单调队列或分治优化动态规划。 - 预处理 `max_height` 和 `total_width` 可以进一步优化性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值