HDU 5768 Lucky7 中国剩余定理+状压+容斥+快速乘法

Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1550    Accepted Submission(s): 577


Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes.
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 

Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y< 1018 ) on a line where n is the number of pirmes.
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi.
It is guranteed that all the pi are distinct and pi!=7.
It is also guaranteed that p1*p2*…*pn<= 1018 and 0<ai<pi<= 105 for every i∈(1…n).
 

Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 

Sample Input
  
2 2 1 100 3 2 5 3 0 1 100
 

Sample Output
  
Case #1: 7 Case #2: 14
Hint
For Case 1: 7,21,42,49,70,84,91 are the seven numbers. For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.
 

Author
FZU
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:   5932  5931  5930  5928  5925 

 



求l,r范围是7的倍数 并且满足一些同余方程的数有几个。

因为n只有15个,很快想到了用容斥来做。

然后对所有的可能,跑中国剩余定理就行了

#include <bits/stdc++.h>
using namespace std;
#define N 20
#define LL long long
LL a[N], m[N];
int s[N], n;
LL extend_Euclid(LL a, LL b, LL &x, LL &y)
{
    if(b==0)
    {
        x = 1;
        y = 0;
        return a;
    }
    LL r = extend_Euclid(b, a%b, y, x);
    y -= a/b*x;
    return r;
}
LL gao(LL x, LL r, LL p)
{
    return (x-r)/p;
}
LL mult(LL a, LL k, LL m)
{
    LL res = 0;
    while(k)
    {
        if(k & 1LL)
            res = (res + a) % m;
        k >>= 1;
        a = (a << 1) % m;
    }
    return res;
}
LL China(LL l, LL r)
{
    LL M = 1, ans = 0;
    for (int i = 0; i <= n; ++i) if(s[i])
        {
            M *= m[i];
        }
    for(int i = 0; i <= n; i++) if(s[i])
        {
            LL Nn = M/m[i];
            LL x, y;
            extend_Euclid(Nn, m[i], x, y);
            x = (x%m[i] + m[i]) % m[i];
            ans = ((ans+mult(a[i]*Nn%M, x, M))%M + M) % M ;
        }
    LL ret = gao(r+M, ans, M) - gao(l-1+M, ans, M);
    return ret;
}
int main()
{
    int T, o = 0;
    scanf("%d", &T);
    while(T--)
    {
        LL l, r;
        scanf("%d%lld%lld", &n, &l, &r);
        memset(s, 0, sizeof(s));
        m[n] = 7;
        a[n] = 0;
        s[n] = 1;
        for(int i = 0; i < n; i++)
            scanf("%lld%lld", &m[i], &a[i]);
        LL ans = 0;
        int all = 1 << n;
        for(int i = 0; i < all; i++)
        {
            int t = i, k = 0;
            for(int j = 0; j < n; j++)
            {
                s[j] = t & 1;
                t >>= 1;
                k += s[j];
            }
            k = k & 1 ? -1 : 1;
            ans += 1LL * k * China(l, r);
        }
        printf("Case #%d: %lld\n", ++o, ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值