参考点击打开链接,
理解这个转移方程:
dp[i][j] = matrix[i][j] == '1' ? Math.min(dp[i-1][j-1], Math.min(dp[i-1][j], dp[i][j-1])) + 1 : 0;
public class Solution {
public int maximalSquare(char[][] matrix) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
return 0;
}
int max = 0, m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m][n];
for (int i = 0; i < m; i++) {
dp[i][0] = matrix[i][0] - '0';
max = Math.max(dp[i][0], max);
}
for (int j = 0; j < n; j++) {
dp[0][j] = matrix[0][j] - '0';
max = Math.max(dp[0][j], max);
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = matrix[i][j] == '1' ? Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1])) + 1 : 0;
max = Math.max(dp[i][j], max);
}
}
return max * max;
}
}
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and return its area.
For example, given the following matrix:
1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0Return 4.