poj——1031——fence

本文提供了一道来自POJ平台的问题1031的解答思路及代码实现,通过计算几何的方法解决了关于多边形面积的问题。

address:http://poj.org/problem?id=1031

My thought:说实话 看见英语题的时候 状态不咋好,后来勉强把题目看完。

难过不是太懂,想了好久,题目根本通不了,这英语太菜让我无语,我去度了一下,有的解法是用积分,有的说这是一道很水的题目。

我大概都看了看,有一些代码 提示错误,下面这个代码是可以用的。   题目中有一部分不是太懂,如果哪位朋友看懂了,可以留下言,谢谢。

#include<iostream>
#include<cmath>
#include<iomanip>
#include<algorithm>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))   
#define min(a,b) ((a)<(b)?(a):(b))

const double PI=3.1415926535;
struct Point{
	double x,y;
};
Point point[205];
double beta(int k){
	//double result=(point[k].x)*(point[k+1].y)-(point[k+1].x)*(point[k].y);	
	double a=sqrt(point[k].x*point[k].x+point[k].y*point[k].y);	//点到原点的长度
	double deg1=acos(point[k].x/a);//与X轴的夹角
	if(point[k].y<0)
		deg1=2*PI-deg1;//求角的时候求出的是与X轴正半轴的夹角,如果在X轴下面,求出的角大小就是2*pi-这个角
	double b=sqrt(point[k+1].x*point[k+1].x+point[k+1].y*point[k+1].y);
	double deg2=acos(point[k+1].x/b);
	if(point[k+1].y<0)
		deg2=2*PI-deg2;
	double ans=deg2-deg1;
	if(ans>=PI)
		ans-=2*PI;
	else if(ans<=-PI)
		ans+=2*PI;
	return ans;
}

int main(){
	double k,h;
	int n,i;
	double angle,maximum,minimum,answer;
	while(cin>>k>>h>>n)
	{
		for(i=0;i<n;i++)
			cin>>point[i].x>>point[i].y;
		angle=0;
		maximum=0;
		minimum=0;
		point[n]=point[0];
		for(i=0;i<n;i++){
			angle+=beta(i);
			maximum=max(maximum,angle);
			minimum=min(minimum,angle);
		}
		
		angle=max(angle,-angle);
		if(fabs(angle-2*PI)<1e-4)
			answer=2*PI;
		else{
			answer=maximum-minimum;
			if(answer>2*PI)
				answer=2*PI;
		};
		answer*=k*h;	
		cout<<fixed<<setprecision(2)<<answer<<endl;
		//system("pause");
	}

	return 0;
}


解题报告:Fence 题目来源:POJ 1031 解法或类型: 计算几何 作者:杨清玄 Fence Time Limit:1S Memory Limit:1000K Total Submit:103 Accepted:26 Description There is an area bounded by a fence on some flat field. The fence has the height h and in the plane projection it has a form of a closed polygonal line (without self-intersections), which is specified by Cartesian coordinates (Xi, Yi) of its N vertices. At the point with coordinates (0, 0) a lamp stands on the field. The lamp may be located either outside or inside the fence, but not on its side as it is shown in the following sample pictures (parts shown in a thin line are not illuminated by the lamp): The fence is perfectly black, i.e. it is neither reflecting, nor diffusing, nor letting the light through. Research and experiments showed that the following law expresses the intensity of light falling on an arbitrary illuminated point of this fence: I0=k/r where k is a known constant value not depending on the point in question, r is the distance between this point and the lamp in the plane projection. The illumination of an infinitesimal narrow vertical board with the width dl and the height h is dI=I0*|cosα|*dl*h where I0 is the intensity of light on that board of the fence, α is the angle in the plane projection between the normal to the side of the fence at this point and the direction to the lamp. You are to write a program that will find the total illumination of the fence that is defined as the sum of illuminations of all its illuminated boards. Input The first line of the input file contains the numbers k, h and N, separated by spaces. k and h are real constants. N (3 <= N <= 100) is the number of vertices of the fence. Then N lines follow, every line contains two real numbers Xi and Yi, separated by a space. Output Write to the output file the total illumination of the fence rounded to the second digit after the decimal point. Sample Input 0.5 1.7 3 1.0 3.0 2.0 -1.0 -4.0 -1.0 Sample Output 5.34 Source Northeastern Europe 1998 解题思路: 本题是一道计算几何的题目。首先,由于题目可以得到dI=I0*|cosα|*dl*h 也就是说一条边的总照度为 = = =a*h*k 其中下,X1,X2为一条边的坐右端点,a为这条边对原点所张的角度 所以实际上本题是要求整个FENCE区域对原点所张开的总角度, 定义FENCE为一有向回路 那么每条边都是有向的。。如果按照边的方向对原点所张开的角度为顺时针。那么定义为正。逆时针为负。并且每输入一条边就把本边对原点张开的角度计算进去加到一个数里去 那么对于包含原点的区域。这个数应该为正负2 ; 对于不包含原点的区域,这个数在按边过程中的最大值-最小值就是这个区域对原点所张开的角度。 还有一种情况,那就是区域不包含原点,但是总共张开的角度大于2 ,那么只要计算为2 即可因为原点对任何区域最多只能张开2 。 数据结构: 用一个POINT数组来储存点的位置 时空分析: 如果有N个点 那么空间复杂度为O(N) 时间复杂度为O(N) 源程序: fence.cpp
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值