python机器学习之聚类算法K-Means——案例:聚类算法用于降维,KMeans的矢量量化应用

本文探讨了如何利用K-Means聚类算法进行矢量量化,从而实现图像的降维和数据压缩。通过将9万多颜色的图像聚类为64类,对比聚类和随机选择质心的方法,展示K-Means在保持图像质量的同时有效减少颜色数量。实验结果显示,K-Means聚类在图像压缩方面优于随机选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚类算法用于降维,KMeans的矢量量化应用

重要属性:
在这里插入图片描述

重要接口:
在这里插入图片描述

案例

矢量量化的降维是在同等样本量上压缩信息的大小,即不改变特征的数目也不改变样本的数目,只改变在这些特征下的样本上的信息量。

用K-Means聚类中获得的质心来替代原有的数据,可以把数据上的信息量压缩到非常小,但又不损失太多信息。我们接下来就通过一张图图片的矢量量化来看一看K-Means如何实现压缩数据大小,却不损失太多信息量。

1、导入需要的库

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.metrics import pairwise_distances_argmin
    #对两个序列中的点进行距离匹配的函数
from sklearn.datasets import load_sample_image
    #导入图片数据所用的类
from sklearn.utils import shuffle #洗牌

2、导入数据,探索数据

导入数据:

# 实例化,导入颐和园的图片
china = load_sample_image("china.jpg")
china

在这里插入图片描述
查看数据:

#查看数据类型
china.dtype

china.shape
#长度 x 宽度 x 像素 > 三个数决定的颜色

china[0][0]

#包含多少种不同的颜色?
newimage = china.reshape((427 * 640,3))
newimage.shape

在这里插入图片描述
数据去重:

import pandas as pd
pd.DataFrame(newimage).drop_duplicates().shape

#我们现在有9W多种颜色

图像可视化:

# 图像可视化
plt.figure(figsize=(15,15))
plt.imshow(china) #导入3维数组形成的图片

安装Docker安装插件,可以按照以下步骤进行操作: 1. 首先,安装Docker。可以按照官方文档提供的步骤进行安装,或者使用适合您操作系统的包管理器进行安装。 2. 安装Docker Compose插件。可以使用以下方法安装: 2.1 下载指定版本的docker-compose文件: curl -L https://github.com/docker/compose/releases/download/1.21.2/docker-compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose 2.2 赋予docker-compose文件执行权限: chmod +x /usr/local/bin/docker-compose 2.3 验证安装是否成功: docker-compose --version 3. 在安装插件之前,可以测试端口是否已被占用,以避免编排过程中出错。可以使用以下命令安装netstat并查看端口号是否被占用: yum -y install net-tools netstat -npl | grep 3306 现在,您已经安装Docker安装Docker Compose插件,可以继续进行其他操作,例如上传docker-compose.yml文件到服务器,并在服务器上安装MySQL容器。可以参考Docker的官方文档或其他资源来了解如何使用DockerDocker Compose进行容器的安装和配置。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Docker安装docker-compose插件](https://blog.youkuaiyun.com/qq_50661854/article/details/124453329)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [Docker安装MySQL docker安装mysql 完整详细教程](https://blog.youkuaiyun.com/qq_40739917/article/details/130891879)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎明之道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值