[Leetcode]62. Unique Paths

本文探讨了机器人在m×n网格中从左上角到右下角的不同路径数量问题,提供了递归与非递归两种解决方案,并分析了各自的时间与空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

62. Unique Paths

  • 本题难度: Easy
  • Topic: Dynamic Programming

Description

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

  1. Right -> Right -> Down
  2. Right -> Down -> Right
  3. Down -> Right -> Right
    Example 2:

Input: m = 7, n = 3
Output: 28

我的代码

recursion

class Solution:
    def uniquePaths(self, m: 'int', n: 'int') -> 'int':
        if m < 0 or n<0:
            return 0
        if m==1 and n==1:
            return 1
        return self.uniquePaths(m-1,n)+self.uniquePaths(m,n-1)

no recursion

class Solution:
    def uniquePaths(self, m: 'int', n: 'int') -> 'int':
        res = [[0 for _ in range(m+1)] for _ in range(n+1)]
        res[1][1] = 1
        for i in range(1,n+1):
            for j in range(1,m+1):
                if j==1 and i==1:
                    continue
                res[i][j] = res[i-1][j]+res[i][j-1]
        return res[n][m]

思路
recurison
到点(m,n)有f(m,n)中走法
每一个点都可以从它的左边或者上面到达,所以f(m,n-1) +f(m,n-1)
但是时间复杂度超过了,所以我用了一个二维数组存储之前的值。

  • 时间复杂度
    recursion
    时间复杂度 O((mn)^2) 空间复杂度O(1)
    no recursion
    时间复杂度 O(mn) 空间复杂度O(mn)
  • 出错
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值