【转】小波变换通俗解释

本文探讨了傅里叶变换及短时傅里叶变换在处理非平稳信号方面的局限性,并详细介绍了小波变换的原理及其优势。通过对比分析,揭示了小波变换在时频分析中的独特作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:http://www.zhihu.com/question/22864189/answer/40772083


从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。
    下面就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。
一、傅里叶变换
    关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解小波的道路上。
    下面我们主要将傅里叶变换的不足。即我们知道傅里叶变化可以分析信号的频谱,那么为什么还要提出小波变换?答案“对非平稳过程,傅里叶变换有局限性”。看如下一个简单的信号:


做完FFT(快速傅里叶变换)后,可以在频谱上看到清晰的四条线,信号包含四个频率成分。

    一切没有问题。但是,如果是频率随着时间变化的非平稳信号呢?


如上图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。

    可见,傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。
    然而平稳信号大多是人为制造出来的,自然界的大量信号几乎都是非平稳的,所以在比如生物医学信号分析等领域的论文中,基本看不到单纯傅里叶变换这样naive的方法。


    上图所示的是一个正常人的事件相关电位。对于这样的非平稳信号,只知道包含哪些频率成分是不够的,我们还想知道各个成分出现的时间。知道信号频率随时间变化的情况,各个时刻的瞬时频率及其幅值——这也就是时频分析。

 

二、短时傅里叶变换(Short-time Fourier Transform,STFT)

    一个简单可行的方法就是——加窗。 “把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。
看图:


时域上分成一段一段做FFT,不就知道频率成分随着时间的变化情况了吗!

用这样的方法,可以得到一个信号的时频图了:


——此图像来源于“THE WAVELET TUTORIAL”

       图上既能看到10Hz, 25 Hz, 50 Hz, 100 Hz四个频域成分,还能看到出现的时间。两排峰是对称的,所以大家只用看一排就行了。
    是不是棒棒的?时频分析结果到手。但是STFT依然有缺陷。
    使用STFT存在一个问题,我们应该用多宽的窗函数?
    窗太宽太窄都有问题:



    窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。

    (这里插一句,这个道理可以用海森堡不确定性原理来解释。类似于我们不能同时获取一个粒子的动量和位置,我们也不能同时获取信号绝对精准的时刻和频率。这也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频率分量存在,我们知道的只能是在一个时间段内某个频带的分量存在。所以绝对意义的瞬时频率是不存在的。)
看看实例效果吧:



——此图像来源于“THE WAVELET TUTORIAL”

上图对同一个信号(4个频率成分)采用不同宽度的窗做STFT,结果如右图。用窄窗,时频图在时间轴上分辨率很高,几个峰基本成矩形,而用宽窗则变成了绵延的矮山。但是频率轴上,窄窗明显不如下边两个宽窗精确。
    所以窄窗口时间分辨率高、频率分辨率低,宽窗口时间分辨率低、频率分辨率高。对于时变的非稳态信号,高频适合小窗口,低频适合大窗口。然而STFT的窗口是固定的,在一次STFT中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。

三、小波变换
    那么你可能会想到,让窗口大小变起来,多做几次STFT不就可以了吗?!没错,小波变换就有着这样的思路。
    但事实上小波并不是这么做的(有人认为“小波变换就是根据算法,加不等长的窗,对每一小部分进行傅里叶变换”,这是不准确的。小波变换并没有采用窗的思想,更没有做傅里叶变换。)
    至于为什么不采用可变窗的STFT呢,我认为是因为这样做冗余会太严重,STFT做不到正交化,这也是它的一大缺陷。

    于是小波变换的出发点和STFT还是不同的。STFT是给信号加窗,分段做FFT;而小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了~

【解释】
    来我们再回顾一下傅里叶变换吧,没弄清傅里叶变换为什么能得到信号各个频率成分的同学也可以再借我的图理解一下。
    傅里叶变换把无限长的三角函数作为基函数:


这个基函数会伸缩、会平移(其实是两个正交基的分解)。缩得窄,对应高频;伸得宽,对应低频。然后这个基函数不断和信号做相乘。某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含该频率的成分的多少。

    仔细体会可以发现,这一步其实是在计算信号和三角函数的相关性。



 看,这两种尺度能乘出一个大的值(相关度高),所以信号包含较多的这两个频率成分,在频谱上这两个频率会出现两个峰。

    以上,就是粗浅意义上傅里叶变换的原理。
    如前边所说,小波做的改变就在于,将无限长的三角函数基换成了有限长的会衰减的小波基。

 
这就是为什么它叫“小波”,因为是很小的一个波嘛~


从公式可以看出,不同于傅里叶变换,变量只有频率ω,小波变换有两个变量:尺度a(scale)和平移量 τ(translation)。尺度a控制小波函数的伸缩,平移量 τ控制小波函数的平移。尺度就对应于频率(反比),平移量 τ就对应于时间。


当伸缩、平移到这么一种重合情况时,也会相乘得到一个大的值。这时候和傅里叶变换不同的是,这不仅可以知道信号有这样频率的成分,而且知道它在时域上存在的具体位置。

    而当我们在每个尺度下都平移着和信号乘过一遍后,我们就知道信号在每个位置都包含哪些频率成分。
    看到了吗?有了小波,我们从此再也不害怕非稳定信号啦!从此可以做时频分析啦!
    做傅里叶变换只能得到一个频谱,做小波变换却可以得到一个时频谱!


↑:时域信号


↑:傅里叶变换结果


——此图像来源于“THE WAVELET TUTORIAL”

↑:小波变换结果

    小波还有一些好处:
    1. 我们知道对于突变信号,傅里叶变换存在吉布斯效应,我们用无限长的三角函数怎么也拟合不好突变信号:

 
然而衰减的小波就不一样了:


2. 小波可以实现正交化,短时傅里叶变换不能。

以上,就是小波的意义。


尽管小波变换在数据压缩和去噪声等领域取得良好的效果,可分离的二维小波变换(不是直接构造出),采用先对行做一次一维小波变换,再对列做一次一维小波变换扩展而来。或者直接用二个可分离的一维函数基直接构造的二维变换,从数学角度都不是真正的二维函数。基函数的支撑区域由区间扩展为正方形,基函数形状的方向性较差,该问题制约着小波变换的进一步应用。同时,由于采用亚抽样技术,在目标提取时会造成信息模糊,对信息利用会产生较大的影响。众所周知,如果某个基函数能与被逼近的函数较好地匹配,则其相应的投影系数较大,变换的能量集中度较高。可见对于平滑区域,小波变换的表示效率较高,而对于图像中方向性较强的边缘以及纹理,由于两者匹配较差,导致其表示效率欠佳。在高维情况下,小波分析并不能充分利用数据本身特有的几何特征,并不是最优的或 “最稀疏”的函数表示方法。 多尺度几何发展的目的和动力正是要致力于发展一种新的高维函数的最优表示方法。为克服小波分析的缺点,人们一直找其改进的方法。我们将这些方法统称超小波分析方法(Beyond Wavelet)。提到超小波分析,首先进行定义超小波分析。超小波分析就是把近来人们为改变小波分析的不足,提出常用基于小技术基础之上的系列变换,即Curvelet、Ridgelet、Contourlet、Bandelet、Beamlet、 Directionlet、Wedgelet和Surfacelet变换的统称,也有人称X-let(包括Wavelet)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值