NUMBER THEORY (MA3Z7)Python

Java Python MA3Z7 2023/24 A 800

MA3Z7 2022/23 A 850

NUMBER THEORY (MA3Z7)

April/May 2024

SECTION A

1.   (a) Use the Euclidean algorithm to find d = (936, 2200).   [7 marks]

(b) Use your solution to part (a) to findh, k ∈ Z satisfying

d = 936h + 2200k.     [10 marks]

(c) When we write a natural number n in base-6, we write n as a string nk . . . n0 of digits ni  ∈ {0, 1, 2, 3, 4, 5} uniquely determined so that

n = nk 6k  + nk -16k-1 + . . . + n1 6 + n0 .

Show that n is divisible by 5 if and only if

5 j nk + nk -1 + . . . + n1 + n0 .    [5 marks]

2. In this question, you must justify all of your assertions, but you may refer to results from the lecture notes without proof.

(a) Find all solutions to the linear congruence

14x 三 21 (mod 63)

by reducing it to a linear congruence with a unique solution (modulo m).  [7 marks]

(b) Find all solutions to the following system of congruences.

2x 三 3 (mod 5)   3x 三 5 (mod 7)   5x 三 7 (mod 11)   [12 marks]

(c) Show that the congruence

x2 三 3 (mod 5005)

has no solutions.    [4 marks]

3. In this question, you may use any results from the lecture notes without proof.

(a) Find the remainder when we divide 3621 by 8. [ NUMBER THEORY (MA3Z7)Python 9 marks]

(b) Find the exponent of 3 in the prime factorisation of 2024!.    [6 marks]

SECTION B

Throughout, you must justify all of your answers.

4.   (a)  (i) Give an example of an arithmetic function that is not multiplicative. [3 marks] (ii) Give an example of an arithmetic function that is multiplicative

but not completely multiplicative. You need not prove that your function is multiplicative if this was established in lectures.     [3 marks]

(iii) Find the sum of the divisors of 385. You may assume any formula given in lectures. [4 marks] (b) Express the generating function of the divisor function in terms of the

Riemann zeta function. You may use any results from the lecture notes as long as you state them precisely.   [9 marks]

(c) Let λ(n) = (—1)k  where k is the total number of prime factors of n (so λ(12) = λ(2 · 2 · 3) = (—1)3  = —1).

(i) Show that the generating function of λ(n) is ζ(2s)ζ(s)—1 . You may assume that λ(n) is completely multiplicative.    [7 marks]

(ii) Show that

You may use the value ζ(4) = 90/π4. You may assume any results from the notes without proof.   [14 marks]

5.   (a) State and prove the fundamental property of the Von Mangoldt function Λ(n).    [11 marks]

(b) Express the generating function of σ(n) in terms of the Riemann zeta function. You may use any results from the lecture notes as long as you state them precisely.    [9 marks]

(c) Show that

You may use any results from the lecture notes without proof         

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕基于序贯蒙特卡洛模拟法的配电网可靠性评估展开研究,重点介绍了利用Matlab代码实现该方法的技术路径。文中详细阐述了序贯蒙特卡洛模拟的基本原理及其在配电网可靠性分析中的应用,包括系统状态抽样、时序模拟、故障判断与修复过程等核心环节。通过构建典型配电网模型,结合元件故障率、修复时间等参数进行大量仿真,获取系统可靠性指标如停电频率、停电持续时间等,进而评估不同运行条件或规划方案下的配电网可靠性水平。研究还可能涉及对含分布式电源、储能等新型元件的复杂配电网的适应性分析,展示了该方法在现代电力系统评估中的实用性与扩展性。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事电网规划与运行的技术工程师。; 使用场景及目标:①用于教学与科研中理解蒙特卡洛模拟在电力系统可靠性评估中的具体实现;②为实际配电网的可靠性优化设计、设备配置与运维策略制定提供仿真工具支持;③支撑学术论文复现与算法改进研究; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法流程,重点关注状态转移逻辑与时间序列模拟的实现细节,并尝试在IEEE标准测试系统上进行验证与扩展实验,以深化对方法机理的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值