
数论
SinclairWang
A very self-motivated person, a very modest man,and also a man does not fear endures hardship.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Common(Easy、Middle 、Hard)
一道题 Easy Version 题目描述 求区间[l,r]内是a或b的倍数的数的个数。求区间 [l, r] 内是 a 或 b 的倍数的数的个数。求区间[l,r]内是a或b的倍数的数的个数。 Input 第一行一个正整数T,代表测试的组数。第一行一个正整数 T, 代表测试的组数。第一行一个正整数T,代表测试的组数。 之后T行,每行四个正整数a,b,l,r,以空格分隔,意义如题面所述。之后 T 行,...原创 2019-12-06 20:15:57 · 874 阅读 · 0 评论 -
线性筛
#include<bits/stdc++.h> using namespace std; const int MAX_N = 3e7+2; typedef long long ll; int v[MAX_N],prime[MAX_N]; void primes(int n) { memset(v,0,sizeof(v)); int m = 0; for(int i=2;i<...原创 2019-10-25 20:39:06 · 166 阅读 · 0 评论 -
裴蜀定理&&扩展欧几里得算法
裴蜀定理 也就是Bezout定理,对于任意整数a,b,存在一对整数x,y,满足ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)。 在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理,裴蜀定理得名于法国数学家艾蒂安·裴蜀。 裴蜀定理说明了对任何整数 a、b和它们的最大公约数 d ,关于未知数 x 和 y 的线性丢番图方程(称为裴蜀等式)。 证明: 若b...原创 2019-10-22 19:58:18 · 953 阅读 · 0 评论 -
费马小定理
若p是质数,则对于任意整数a,有ap≡a(mod p)a^p \equiv a (mod \, p)ap≡a(modp)原创 2019-10-22 16:50:04 · 204 阅读 · 0 评论 -
欧几里得算法求最大公约数
欧几里得算法求最大公约数 Sometimes your whole life boils down to one insane move. 人这一辈子,有时就得靠一次疯狂的举动才能扭转乾坤。 ------------------《阿凡达》 文章目录欧几里得算法求最大公...原创 2019-01-09 09:47:31 · 3364 阅读 · 0 评论