项目目标
- 创建一个 Scrapy 项目。
- 创建一个 Spider 来抓取站点和处理数据。
- 通过命令行将抓取的内容导出。
- 将抓取的内容保存到 MongoDB 数据库。
开发工具
- Scrapy 框架
- MongoDB
- PyMongo 库
创建项目
创建一个 Scrapy 项目,项目文件可以直接用 scrapy 命令生成,命令如下所示:
scrapy startproject tutorial
这个命令将会创建一个名为 tutorial 的文件夹,文件夹结构如下所示:
scrapy.cfg # Scrapy 部署时的配置文件
tutorial # 项目的模块,引入的时候需要从这里引入
__init__.py
items.py # Items 的定义,定义爬取的数据结构
middlewares.py # Middlewares 的定义,定义爬取时的中间件
pipelines.py # Pipelines 的定义,定义数据管道
settings.py # 配置文件
spiders # 放置 Spiders 的文件夹
__init__.py
创建 Spider
在spiders文件夹里创建.py爬虫文件,格式如下:
import scrapy
class QuotesSpider(scrapy.Spider):
name = "quotes"
allowed_domains = ["quotes.toscrape.com"]
start_urls = ['http://quotes.toscrape.com/']
def parse(self, response):
pass
这里有三个属性 ——name、allowed_domains 和 start_urls,还有一个方法 parse。
- name,它是每个项目唯一的名字,用来区分不同的 Spider。
- allowed_domains,它是允许爬取的域名,如果初始或后续的请求链接不是这个域名下的,则请求链接会被过滤掉。
- start_urls,它包含了 Spider 在启动时爬取的 url 列表,初始请求是由它来定义的。
- parse,它是 Spider 的一个方法。默认情况下,被调用时 start_urls 里面的链接构成的请求完成下载执行后,返回的响应就会作为唯一的参数传递给这个函数。该方法负责解析返回的响应、提取数据或者进一步生成要处理的请求。
创建 Item
Item 是保存爬取数据的容器,它的使用方法和字典类似。不过,相比字典,Item 多了额外的保护机制,可以避免拼写错误或者定义字段错误。
创建 Item 需要继承 scrapy.Item 类,并且定义类型为 scrapy.Field 的字段。类似如下定义:
import scrapy
class QuoteItem(scrapy.Item):
text = scrapy.Field()
author = scrapy.Field()
tags = scrapy.Field()
解析 Response
import scrapy
class QuotesSpider(scrapy.Spider):
name = "quotes"
allowed_domains = ["quotes.toscrape.com"]
start_urls = ['http://quotes.toscrape.com/']
def parse(self, response):
pass
parse() 方法的参数 response 是 start_urls 里面的链接爬取后的结果。所以在 parse() 方法中,我们可以直接对 response 变量包含的内容进行解析,比如浏览请求结果的网页源代码,或者进一步分析源代码内容,或者找出结果中的链接而得到下一个请求。
提取的方式可以是 CSS 选择器或 XPath 选择器。
css选择器
例:
源码:
<div class="quote" itemscope=""itemtype="http://schema.org/CreativeWork">
<span class="text" itemprop="text">“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”</span>
<span>by <small class="author" itemprop="author">Albert Einstein</small>
<a href="/author/Albert-Einstein">(about)</a>
</span>
<div class="tags">
Tags:
<meta class="keywords" itemprop="keywords" content="change,deep-thoughts,thinking,world">
<a class="tag" href="/tag/change/page/1/">change</a>
<a class="tag" href="/tag/deep-thoughts/page/1/">deep-thoughts</a>
<a class="tag" href="/tag/thinking/page/1/">thinking</a>
<a class="tag" href="/tag/world/page/1/">world</a>
</div>
</div>
不同css选择器的返回结果如下:
quote.css(’.text’)
[<Selector xpath="descendant-or-self::*[@class and contains(concat(' ', normalize-space(@class), ' '), ' text ')]"data='<span class="text"itemprop="text">“The '>]
quote.css(’.text::text’)
[<Selector xpath="descendant-or-self::*[@class and contains(concat(' ', normalize-space(@class), ' '), ' text ')]/text()"data='“The world as we have created it is a pr'>]
quote.css(’.text’).extract()
['<span class="text"itemprop="text">“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”</span>']
quote.css(’.text::text’).extract()
['“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”']
quote.css(’.text::text’).extract_first()
“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”
使用Item
上文定义了 Item,接下来就要使用它了。Item 可以理解为一个字典,不过在声明的时候需要实例化。然后依次用刚才解析的结果赋值 Item 的每一个字段,最后将 Item 返回即可。
QuotesSpider 的改写如下所示:
import scrapy
from tutorial.items import QuoteItem # 导入库
class QuotesSpider(scrapy.Spider): # 自定义爬虫类 继承scrapy.Spider
name = "quotes" # 爬虫名字
allowed_domains = ["quotes.toscrape.com"] # 待爬取网站域名
start_urls = ['http://quotes.toscrape.com/'] # 待爬取网站的起始网址
def parse(self, response): # 解析/提取规则
'''
<div class="quote" itemscope="" itemtype="http://schema.org/CreativeWork">
<span class="text" itemprop="text">“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”</span>
<span>by <small class="author" itemprop="author">Albert Einstein</small>
<a href="/author/Albert-Einstein">(about)</a>
</span>
<div class="tags">
Tags:
<meta class="keywords" itemprop="keywords" content="change,deep-thoughts,thinking,world">
<a class="tag" href="/tag/change/page/1/">change</a>
<a class="tag" href="/tag/deep-thoughts/page/1/">deep-thoughts</a>
<a class="tag" href="/tag/thinking/page/1/">thinking</a>
<a class="tag" href="/tag/world/page/1/">world</a>
</div>
</div>
'''
quotes = response.css('.quote') # 获取当页所有名言 div标签
for quote in quotes:
item = QuoteItem() # 实例化
item['text'] = quote.css('.text::text').extract_first() # .text css选择器 ::text获取节点的文本内容,结果是列表,用extract_first()获取第一个元素
item['author'] = quote.css('.author::text').extract_first()
item['tags'] = quote.css('.tags .tag::text').extract() # 获取整个列表
yield item
后续 Request
这一页爬完了,要生成下一页的链接,构造请求时需要用到 scrapy.Request。这里我们传递两个参数 ——url 和 callback,这两个参数的说明如下。
- url:它是请求链接。
- callback:它是回调函数。当指定了该回调函数的请求完成之后,获取到响应,引擎会将该响应作为参数传递给这个回调函数。回调函数进行解析或生成下一个请求,回调函数如上文的 parse() 所示。
利用选择器得到下一页链接并生成请求,在 parse() 方法后追加如下的代码:
next = response.css('.pager .next a::attr(href)').extract_first()
url = response.urljoin(next)
yield scrapy.Request(url=url, callback=self.parse)
第一句代码首先通过 CSS 选择器获取下一个页面的链接,即要获取 a 超链接中的 href 属性。这里用到了::attr(href) 操作。然后再调用 extract_first() 方法获取内容。
第二句代码调用了 urljoin() 方法,urljoin() 方法可以将相对 URL 构造成一个绝对的 URL。例如,获取到的下一页地址是 /page/2,urljoin() 方法处理后得到的结果就是:http://quotes.toscrape.com/page/2/。
第三句代码通过 url 和 callback 变量构造了一个新的请求,回调函数 callback 依然使用 parse() 方法。这个请求完成后,响应会重新经过 parse 方法处理,得到第二页的解析结果,然后生成第二页的下一页,也就是第三页的请求。这样爬虫就进入了一个循环,直到最后一页。
通过几行代码,我们就轻松实现了一个抓取循环,将每个页面的结果抓取下来了。
改写之后的整个 Spider 类如下所示:
import scrapy
from tutorial.items import QuoteItem
class QuotesSpider(scrapy.Spider):
name = "quotes"
allowed_domains = ["quotes.toscrape.com"]
start_urls = ['http://quotes.toscrape.com/']
def parse(self, response):
quotes = response.css('.quote')
for quote in quotes:
item = QuoteItem()
item['text'] = quote.css('.text::text').extract_first()
item['author'] = quote.css('.author::text').extract_first()
item['tags'] = quote.css('.tags .tag::text').extract()
yield item
# 下一个要爬取的页面url
'''
<li class="next">
<a href="/page/2/">Next <span aria-hidden="true">→</span></a>
</li>
'''
next = response.css('.pager .next a::attr("href")').extract_first()
url = response.urljoin(next) # 生成新的URL
yield scrapy.Request(url=url, callback=self.parse) # 当请求完成后,引擎将响应作为参数传递给回调函数 继续解析
运行
进入目录,运行如下命令:
scrapy crawl quotes
保存到文件
Scrapy 提供的 Feed Exports 可以轻松将抓取结果输出。例如,我们想将上面的结果保存成 JSON 文件,可以执行如下命令:
scrapy crawl quotes -o quotes.json
命令运行后,项目内多了一个 quotes.json 文件,文件包含了刚才抓取的所有内容,内容是 JSON 格式。
另外我们还可以每一个 Item 输出一行 JSON,输出后缀为 jl,为 jsonline 的缩写,命令如下所示:
scrapy crawl quotes -o quotes.jl
或
scrapy crawl quotes -o quotes.jsonlines
输出格式还支持很多种,例如 csv、xml、pickle、marshal 等,还支持 ftp、s3 等远程输出,另外还可以通过自定义 ItemExporter 来实现其他的输出。
例如,下面命令对应的输出分别为 csv、xml、pickle、marshal 格式以及 ftp 远程输出:
scrapy crawl quotes -o quotes.csv
scrapy crawl quotes -o quotes.xml
scrapy crawl quotes -o quotes.pickle
scrapy crawl quotes -o quotes.marshal
scrapy crawl quotes -o ftp://user:pass@ftp.example.com/path/to/quotes.csv
其中,ftp 输出需要正确配置用户名、密码、地址、输出路径,否则会报错。
通过 Scrapy 提供的 Feed Exports,我们可以轻松地输出抓取结果到文件。对于一些小型项目来说,这应该足够了。不过如果想要更复杂的输出,如输出到数据库等,我们可以使用 Item Pileline 来完成。
使用 Item Pipeline
如果想进行更复杂的操作,如将结果保存到 MongoDB 数据库,或者筛选某些有用的 Item,则我们可以定义 Item Pipeline 来实现。
Item Pipeline 为项目管道。当 Item 生成后,它会自动被送到 Item Pipeline 进行处理,我们常用 Item Pipeline 来做如下操作:
- 清洗 HTML 数据
- 验证爬取数据,检查爬取字段
- 查重并丢弃重复内容
将爬取结果储存到数据库
要实现 Item Pipeline 很简单,只需要定义一个类并实现 process_item() 方法即可。启用 Item Pipeline 后,Item Pipeline 会自动调用这个方法。process_item() 方法必须返回包含数据的字典或 Item 对象,或者抛出 DropItem 异常。
**process_item() 方法有两个参数。**一个参数是 item,每次 Spider 生成的 Item 都会作为参数传递过来。另一个参数是 spider,就是 Spider 的实例。
实现一个 Item Pipeline,筛掉 text 长度大于 50 的 Item,并将结果保存到 MongoDB。代码如下:
import pymongo
from scrapy.exceptions import DropItem
class TextPipeline(object):
def __init__(self):
self.limit = 50
def process_item(self, item, spider):
if item['text']:
if len(item['text']) > self.limit: # 存在item 的 text 属性,判断长度是否大于 50
item['text'] = item['text'][0:self.limit].rstrip() + '...' # 大于50,那就截断然后拼接省略号
return item
else:
return DropItem('Missing Text') # 不存在 item 的 text 属性,抛出 DropItem 异常
# 将处理后的 item 存入 MongoDB,定义另外一个 Pipeline
# 实现另一个类 MongoPipeline
class MongoPipeline(object):
def __init__(self,mongo_uri, mongo_db):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db
# 从配置文件setting.py中获取mongo_uri,mongo_db 需要自己在setting.py中定义
# MongoDB 连接需要的地址(mongo_uri)和数据库名称(mongo_db)
@classmethod
def from_crawler(cls, crawler):
return cls(mongo_uri=crawler.settings.get('MONGO_URI'),
mongo_db=crawler.settings.get('MONGO_DB')
)
# 连接并打开数据库
def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo_uri)
self.db = self.client[self.mongo_db]
# 该方法必须定义,而且必须要有item和spider两个参数 其他方法可以随便写
def process_item(self, item, spider):
name = item.__class__.__name__
self.db[name].insert(dict(item)) # 将数据插入集合 要转换为字典形式 键值对
return item
# 关闭连接
def close_spider(self, spider):
self.client.close()
MongoPipeline 类实现了 API 定义的另外几个方法。
- from_crawler,这是一个类方法,用 @classmethod 标识,是一种依赖注入的方式,方法的参数就是 crawler,通过 crawler 这个我们可以拿到全局配置的每个配置信息,在全局配置 settings.py 中我们可以定义 MONGO_URI 和 MONGO_DB 来指定 MongoDB 连接需要的地址和数据库名称,拿到配置信息之后返回类对象即可。所以这个方法的定义主要是用来获取 settings.py 中的配置的。
- open_spider,当 Spider 被开启时,这个方法被调用。在这里主要进行了一些初始化操作。
- close_spider,当 Spider 被关闭时,这个方法会调用,在这里将数据库连接关闭。
最主要的 process_item() 方法则执行了数据插入操作。
定义好 TextPipeline 和 MongoPipeline 这两个类后,我们需要在 settings.py 中使用它们。MongoDB 的连接信息还需要定义。
我们在 settings.py 中加入如下内容:
# 赋值 ITEM_PIPELINES 字典,键名是 Pipeline 的类名称,键值是调用优先级,是一个数字,数字越小则对应的 Pipeline 越先被调用。
ITEM_PIPELINES = {
'tutorial.pipelines.TextPipeline': 300,
'tutorial.pipelines.MongoPipeline': 400,
}
MONGO_URI='localhost'
MONGO_DB='tutorial
再重新执行爬取,命令如下所示:
scrapy crawl quotes
爬取结束后,MongoDB 中创建了一个 tutorial 的数据库、QuoteItem 的表,如图所示:


参考资料:
《Python3网络爬虫开发实践——13.2 Scrapy入门》
Python爬虫实战 | (20) Scrapy入门实例
5065

被折叠的 条评论
为什么被折叠?



