Redis第三弹,给你一亿个keys,如何高效统计?

本文探讨了在Redis中如何高效地处理大规模数据的统计问题,包括使用Set进行交集、差集、并集操作以进行聚合统计,Sorted Set实现排序统计,Bitmap处理二值状态统计,以及HyperLogLog进行基数统计。通过实例解析,阐述了各种数据类型的适用场景和优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

不知你大规模的用过Redis吗?还是仅仅作为缓存的工具了?在Redis中使用最多的就是集合了,举个例子,如下场景:

  1. 签到系统中,一天对应一系列的用户签到记录。
  2. 电商系统中,一个商品对应一系列的评论。
  3. 交友系统中,某个用户的一系列的好友。

Redis中集合的特点无非是一个Key对应一系列的数据, 但是数据的作用往往是为了统计的,比如:

  1. 交友系统中,需要统计每天的新增好友,以及双方的共同好友。
  2. 电商系统中,需要统计评论列表中的最新评论。
  3. 签到系统中,需要统计连续一个月的签到的用户数量。

大型互联网应用中,数据量是巨大的,少说百万,千万,甚至是一个亿,比如电商巨头淘宝,交友巨头微信、微博;办公巨头钉钉等,哪一个的用户不是上亿?

只有针对不同场景,选择合适的集合,统计才能更方便。

聚合统计

聚合统计指的是多个元素聚合的结果,比如统计多个集合的交集并集差集

在你需要对多个集合做聚合统计的时候,Set集合是个不错的选择,除了其中无重复的数据外,Redis还提供了对应的API

交集

在上述的例子中交友系统中统计双方的共同好友正是聚合统计中的交集

Redis中可以userid作为key,好友的userid作为value,如下图:

统计两个用户的共同好友只需要两个Set集合的交集,命令如下;

SINTERSTORE userid:new userid:20002 userid:20003
复制代码

上述命令运行完成后,userid:new这个key中存储的将是userid:20002userid:20003两个集合的交集。

差集

举个例子:假设交友系统中需要统计每日新增的好友,此时就需要对临近两天的好友集合取差集了,比如2020

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值