化简方程


  • 改写二阶为一阶:
    k=tϕ+g0ig00iϕ,ξi=iϕ,那么tξi=itϕ=i(kg0ig00iϕ)
    T=2Nφcd(gijΦicaΦjdbΠcaΠbdφefΓaceΓbdf)12NtctdΠcdΠabNtcΠcigijΦjab2N(aHb)
    Γb=Hb就是广义调和,令Φiab=iφab,  NΠab=tφabNiΦiabt=(t0,t1,t2,t3)=(1N,N1N,N2N,N3N)
    现在的变量有{φab,Πab,Φiab,ϕ,k,ξi}
    tφabNkkφabtΠabNkkΠab+NgkikΦiabtΦiabNkkΦiabtϕNiiϕtkNiikgijN2iξjtξiNjjξiik=NΠab=T+(aϕ)(bϕ)+φabV=12NtctdΦicdΠab+NgjktcΦijkΦkab=k=Ngij[N(Hj+gklΓikl)jN]+Vϕ=i(Nj)ξj

    边界条件:我们先选择度量:
    ds2=N2dt2+γ(dr+βdt)2=(N2+β2γ)dt2+γdr2+2βγdrdt

    ϕ(0,r)N(0,r)β(0,r)γ(0,r)|r=0γ(0,r)|rrφabrΠab=ϕ0e(rr0)2/Δ2=γ(0,r)2=0=0=1=0=0

    这个边值条件和施瓦希差多远?
    N1000000000000N1000000000000N1000000000000N1000000000000N1000000000000N1000000000g11N00N1000000000g11N00N1000000000g11N00N1000000000000N1000000000000N110000000000g11N2N1
    特征值:{N1(10),N1g11N,N1+g11N}
    特征向量:
    {0,0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,1,0,0,0,0,0,0}, {0,0,0,0,1,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,0}, {0,0,1,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0,0}, {1,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0,0,0,g11N,1},{0,0,0,0,0,0,0,0,0,0,g11N,1}
    apparent horizon
    θ=rtS+(1+rrS)(gtrgrr+g2trg2rrgttgrr)=0

    在本文简单情况下
    θ=gtrgrr+g2trg2rrgttgrr=0

不把ϕ考虑进方程组,前9个未知变量
N1000000000N1000000000N1000000000N1000000000N1000000000N1000000g11N00N1000000g11N00N1000000g11N00N1
特征向量是{0,0,0,0,0,1,0,0,0},{0,0,0,0,1,0,0,0,0},{0,0,0,1,0,0,0,0,0},{0,0,1,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0},{1,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0}
特征值:{1,1,1,1,1,1,0,0,0}
- 另外一种方案:不把标量场ϕ放到一阶方程组里。

tφabNkkφabtΠabNkkΠab+NgkikΦiabtΦiabNkkΦiabϕ=NΠab=T+(aϕ)(bϕ)+φabV=12NtctdΦicdΠab+NgjktcΦijkΦkab=Vϕ

给出边界条件:
2[k(cφd)a12kaφcd]du1^cddu0^abdu2^kab(PcaPdb12PabPcd)(du1^±cd)=0=0=0=0

  • Lee的笔记:
    Ek=Πk+Φkt=12(u1+k+u1k)+12nk(u1+tu1t)+u2^kt
    nkEk=12(nku1+k+nku1k+u1+tu1t)+nku2^kt(35)

    关于nku2^kt这一项,注意:nkPikΦit=nk(δiknink)Φit=0,所以这项必须消失。
    Φij=12ni(u1+ju1j)+u2^ij,Bk=ϵijkΦij=12ϵijkni(u1+ju1j)+ϵijku2^ij
    那么nkBk=
    12ϵijknkni(u1+ju1j)+nkϵijku2^ij=12ϵijknkni(u1+ju1j)+ϵijknku2^ij(36)

    关于12ϵijknkni(u1+ju1j)这项,注意:(A×B)i=ϵijkAjBk=ϵijkAjBk,所以这项必须为0.以下推导(37)式
    PkiEk=12Pki(u1+k+u1k)+Pkiu2^kt=12Pki(u1+k+u1k)+u2^it
    ϵjkinjBk=ϵjkinjϵabku2^ab+12ϵjkinjϵabkna(u1+bu1b)
    ϵjkinjBk=ϵjkinjϵabku2^ab+12ϵjkinjϵabkna(u1+bu1b)=ϵjikϵabknju2^ab+12ϵijkϵabknjna(u1+bu1b)=nju2^ab(δajδbiδbjδai)+12njna(δaiδbjδbiδaj)=nju2^ij12Pji(u1+j)+12Pji(u1j)

    可得:
    PkiEk+ϵjkinjBk=Pkiu1k+u2^it+nku2^ik(37)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值