A Bug's Life(并查集)

本文介绍并查集的基本概念及其实现方式,包括路径压缩和按秩合并等优化技巧,并通过一个具体的虫子互动问题实例展示了如何利用并查集解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Background 
Professor Hopper is researching the sexual behavior of a rare species of bugs. He assumes that they feature two different genders and that they only interact with bugs of the opposite gender. In his experiment, individual bugs and their interactions were easy to identify, because numbers were printed on their backs. 

Problem 
Given a list of bug interactions, decide whether the experiment supports his assumption of two genders with no homosexual bugs or if it contains some bug interactions that falsify it.
 
Input
The first line of the input contains the number of scenarios. Each scenario starts with one line giving the number of bugs (at least one, and up to 2000) and the number of interactions (up to 1000000) separated by a single space. In the following lines, each interaction is given in the form of two distinct bug numbers separated by a single space. Bugs are numbered consecutively starting from one.
 
Output

            The output for every scenario is a line containing "Scenario #i:", where i is the number of the scenario starting at 1, followed by one line saying either "No suspicious bugs found!" if the experiment is consistent with his assumption about the bugs' sexual behavior, or "Suspicious bugs found!" if Professor Hopper's assumption is definitely wrong.
 
Sample Input
2
3 3
1 2
2 3
1 3
4 2
1 2
3 4
 
Sample Output
Scenario #1:
Suspicious bugs found!

Scenario #2:
No suspicious bugs found!

Hint
Huge input,scanf is recommended.
 
 
Source
TUD Programming Contest 2005, Darmstadt, Germany
 
Recommend
linle

这是第一次接触并查集,看了看课本上的有关知识,算是有初步的了解,还是要多做题!!加油!!!!!!

1、什么叫并查集
  并查集(union-find set)是一种用于分离集合操作的抽象数据类型。它所处理的是“集合”之间的关系,即动态地维护和处理集合元素之间复杂的关系,当给出两个元素的一个无序对(a,b)时,需要快速“合并”a和b分别所在的集合,这其间需要反复“查找”某元素所在的集合。“并”、“查”和“集”三字由此而来。在这种数据类型中,n个不同的元素被分为若干组。每组是一个集合,这种集合叫做分离集合(disjoint set)。并查集支持查找一个元素所属的集合以及两个元素各自所属的集合的合并。
  例如,有这样的问题:初始时n个元素分属不同的n个集合,通过不断的给出元素间的联系,要求实时的统计元素间的关系(是否存在直接或间接的联系)。这时就有了并查集的用武之地了。元素间是否有联系,只要判断两个元素是否属于同一个集合;而给出元素间的联系,建立这种联系,则只需合并两个元素各自所属的集合。这些操作都是并查集所提供的。
   并查集本身不具有结构,必须借助一定的数据结构以得到支持和实现。数据结构的选择是一个重要的环节,选择不同的数据结构可能会在查找和合并的操作效率上有很大的差别,但操作实现都比较简单高效。并查集的数据结构实现方法很多,数组实现、链表实现和树实现。一般用的比较多的是数组实现。

2、并查集支持的操作

    并查集的数据结构记录了一组分离的动态集合S={S1,S2,…,Sk}。每个集合通过一个代表加以识别,代表即该元素中的某个元素,哪一个成员被选做代表是无所谓的,重要的是:如果求某一动态集合的代表两次,且在两次请求间不修改集合,则两次得到的答案应该是相同的。
    动态集合中的每一元素是由一个对象来表示的,设x表示一个对象,并查集的实现需要支持如下操作:
  MAKE(x):建立一个新的集合,其仅有的成员(同时就是代表)是x。由于各集合是分离的,要求x没有在其它集合中出现过。
  UNIONN(x,y):将包含x和y的动态集合(例如Sx和Sy)合并为一个新的集合,假定在此操作前这两个集合是分离的。结果的集合代表是Sx∪Sy的某个成员。一般来说,在不同的实现中通常都以Sx或者Sy的代表作为新集合的代表。此后,由新的集合S代替了原来的Sx和Sy。
    FIND(x):返回一个指向包含x的集合的代表。下面有一种优化的方法:

并查集的路径压缩
  此种做法就是将元素的父亲结点指来指去地指,当这棵树是链的时候,可见判断两个元素是否属于同一集合需要O(n)的时间,于是路径压缩产生了作用。
  路径压缩实际上是在找完根结点之后,在递归回来的时候顺便把路径上元素的父亲指针都指向根结点。

-------------------------------------------------------------------------------------------------------------------------------------------以下转自:http://www.cnblogs.com/dongsheng/archive/2012/08/08/2627917.html

/* 功能Function Description:     POJ-2492 并查集应用的扩展
   开发环境Environment:          DEV C++ 4.9.9.1
   技术特点Technique:
   版本Version:
   作者Author:                   可笑痴狂
   日期Date:                      20120808
   备注Notes:
关于并查集,注意两个概念:按秩合并、路径压缩。
1、按秩合并
由于并查集一般是用比较高效的树形结构来表示的,按秩合并的目的就是防止产生退化的树(也就是类似链表的树),
用一个数组记录各个元素的高度(也有的记录各个元素的孩子的数目,具体看哪种能给解题带来方便),
然后在合并的时候把高度小的嫁接到高度大的上面,从而防止产生退化的树。
2、路径压缩
而另一个数组记录各个元素的祖先,这样就防止一步步地递归查找父亲从而损失的时间。因为并查集只要搞清楚各个元素所在的集合,
而区分不同的集合我们用的是代表元素(也就是树根),所以对于每个元素我们只需保存其祖先,从而区分不同的集合。
而我们这道题并没有使用纯正的并查集算法,而是对其进行了扩展,
我们并没有使用“1、按秩合并”(当然你可以用,那样就需要再开一个数组)
我们从“1、按秩合并”得到启示,保存“秩”的数组保存的是    元素相对于父节点的关系  ,我们岂不可以利用这种关系
(即相对于父节点的不同秩值来区分不同的集合),从而可以把两个集合合并成一个集合。
(注:此代码 relation=0 代表 和父节点同一性别)
*/

#include<stdio.h>
int father[2005];
int relation[2005];


int find_father(int i)
{
    int t;
    if(father[i]==i)
        return i;


    //计算相对于新的父节点(即根)的秩,relation[t]是老的父节点相对于新的父节点(即根)的秩,relation[i]是i元素相对于老的父节点的秩,
    //类似于物理里的相对运动,得到的r[i]就是相对于新的父节点(即根)的秩。而且这个递归调用不会超过两层
    t=father[i];    
    father[i]=find_father(father[i]);
    relation[i]=(relation[i]+relation[t]+1)%2;   //注意递归中把这棵树relation中的的值都更新一遍,这句的顺序 不能 和上一句 调换位置
    // relation[a]的改变是伴随着father[a]的改变而更新的(有father改变就有relation改变),要是father改变了,而relation未改变,此时的relation就记录了一个错误的值,
    //father未改变(即使实际的father已不是现在的值,但只要father未改变,relation的值就是“正确”的,认识到这点很重要。)
    return father[i];
}


void merge(int a,int b)
{
    int x,y;
    x=find_father(a);
    y=find_father(b);
    father[x]=y;
    relation[x]=(relation[b]-relation[a])%2;//relation[a]+relation[x]与relation[b]相对于新的父节点必须相差1个等级,因为他们不是gay
}                                            //x下边的节点不用改,因为查找的时候会自动更新


int main()
{
    int T,m,n,i,j,a,b,flag;
    scanf("%d",&T);
    for(i=1;i<=T;++i)
    {
        flag=0;
        scanf("%d%d",&n,&m);
        for(j=1;j<=n;++j)       //初始化
        {
            father[j]=j;
            relation[j]=1;
        }
        for(j=1;j<=m;++j)
        {
            scanf("%d%d",&a,&b);
            if(find_father(a)==find_father(b))
            {
            //    if(relation[a]!=(relation[b]+1)%2)
                if(relation[a]==relation[b])            //说明是同性
                    flag=1;
            }
            else
                merge(a,b);
        }
        if(flag)
            printf("Scenario #%d:\nSuspicious bugs found!\n\n",i);
        else
            printf("Scenario #%d:\nNo suspicious bugs found!\n\n",i);
    }
    return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值