Leftmost Digit(数论)

本文介绍了一种高效算法,用于求解大整数N^N的最左侧位数,通过数学转换和对数运算实现。适用于N最大为10亿的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
 
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
 
Output
For each test case, you should output the leftmost digit of N^N.
 
Sample Input
2
3
4
 
Sample Output
2
2

Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.
 
Author
Ignatius.L
 


题意:

求n^n的最左边的位数!!看题目  n到100000000

解析:

N^N=a*10^k //0<a<1,k为N^N的位数
两边取以10为底的对数
N*log10(N)=log10(a)+k
k=log10(N^N)=N*log10(N)取整
则log10(a)=N*log10(N)-取整(N*log10(N))

代码:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int ca,n;
double x;
cin>>ca;
while( ca-- ) {
cin>>n;
x=n*log10((double)n);
x=x-(__int64)x;
cout<<(int)pow(10.0,x)<<endl;
}
return 0;
}
int 和 long 型为 32 位整型,其范围为 -2G(-21亿多)至 2G(+21亿多),若需要计算的整数超出此范围,则需要使用 __int64 类型,此类型为 64位整数,其范围非常大,一般不会超出范围


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值