Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
|
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000). |
Output
For each test case, you should output the leftmost digit of N^N.
|
Sample Input
2 3 4 |
Sample Output
2 2 |
Author
Ignatius.L
|
题意:
求n^n的最左边的位数!!看题目 n到100000000
解析:
N^N=a*10^k //0<a<1,k为N^N的位数
两边取以10为底的对数
N*log10(N)=log10(a)+k
k=log10(N^N)=N*log10(N)取整
则log10(a)=N*log10(N)-取整(N*log10(N))
代码:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int ca,n;
double x;
cin>>ca;
while( ca-- ) {
cin>>n;
x=n*log10((double)n);
x=x-(__int64)x;
cout<<(int)pow(10.0,x)<<endl;
}
return 0;
}
int 和 long 型为 32 位整型,其范围为 -2G(-21亿多)至 2G(+21亿多),若需要计算的整数超出此范围,则需要使用 __int64 类型,此类型为 64位整数,其范围非常大,一般不会超出范围