Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6
8
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
题意:
给你一个整数n,从1到n组成一个圆环,要求相邻的两个数的和为素数,让你输出每种情况!!
思路:
运用深度搜索,对每个位置的数值进行判断,可以定义一个判断是否素数的函数(因个数较为小,可以直接写出)和输出的函数,即当找的数的位数与n相等时以及最后一位和第一位和为素数,输出!!还有就是每次情况结束之后,要进行回溯!来两个数组,一个用来存放每个位置存放的数,另一个记录每个数的状态!!!
代码:
#include <bits/stdc++.h>
using namespace std;
int prime[12]={2,3,5,7,11,13,17,19,23,29,31,37};
int n,pos[21],con[21];
bool isPrime(int a,int b)
{
int c=a+b;
for(int i=0;i<12;i++)
if(prime[i]==c)
return 1;
return 0;
}
void output()
{
for(int i=1;i<n;i++)
cout<<pos[i]<<' ';
cout<<pos[n]<<endl;
}
void go(int m)
{
for(int i=2;i<=n;i++)
{
if(isPrime(pos[m-1],i)&&con[i]==0)
{
pos[m]=i;
con[i]=1; if(m==n&&isPrime(1,pos[m]))
{
output();
}
else go(m+1);
con[i]=0;
}
}
}
int main()
{
int ans=0;
pos[1]=1;
while(cin>>n)
{ memset(con,0,sizeof(con));
con[1]=1;
ans++;
cout<<"Case "<<ans<<":"<<endl;
go(2);
cout<<endl;
}
return 0;
}
搜索题还是吃力!!多刷题!!!!