-
矩阵之和的特殊形式(schur complement 推导)
(A−BCD)−1=A−1+A−1B(C−1−DA−1B)−1DA−1(\boldsymbol A - \boldsymbol B \boldsymbol C \boldsymbol D )^{-1} = \boldsymbol A^{-1} + \boldsymbol A^{-1} \boldsymbol B ( \boldsymbol C^{-1} - \boldsymbol D \boldsymbol A^{-1} \boldsymbol B)^{-1} \boldsymbol D \boldsymbol A^{-1} (A−BCD)−1=A−1+A−1B(C−1−DA−1B)−1DA−1 -
对数行列式求导
∂ln∣X∣∂X=X−1\frac{\partial {ln|\boldsymbol X|}}{\partial {\boldsymbol X}}=\boldsymbol X^{-1}∂X∂ln∣X∣=X−1
矩阵相关
最新推荐文章于 2022-11-29 16:25:32 发布