Construct Binary Tree from Inorder and Postorder Traversal

本文介绍了一种通过给定的中序遍历和后序遍历序列来构建二叉树的方法。该方法首先检查输入序列的有效性,然后递归地构建二叉树结构。通过查找后序遍历中的根节点,在中序遍历中确定左右子树的范围,从而完成树的构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given inorder and postorder traversal of a tree, construct the binary tree.

 Notice

You may assume that duplicates do not exist in the tree.

Given inorder [1,2,3] and postorder [1,3,2], return a tree:

  2
 / \
1   3
/**
 * Definition of TreeNode:
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left, right;
 *     public TreeNode(int val) {
 *         this.val = val;
 *         this.left = this.right = null;
 *     }
 * }
 */
 
 
public class Solution {
    /**
     *@param inorder : A list of integers that inorder traversal of a tree
     *@param postorder : A list of integers that postorder traversal of a tree
     *@return : Root of a tree
     */
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        if(inorder.length == 0 || postorder.length == 0) {
            return null;
        }
        return construct(inorder, 0, inorder.length - 1, postorder, 0, postorder.length - 1);
    }
    
    private TreeNode construct(int[] inorder, int inStart, int inEnd, int[] postorder, int postStart, int postEnd) {
        if(inStart > inEnd || postStart > postEnd) {
            return null;
        }
        TreeNode root = new TreeNode(postorder[postEnd]);
        int position = 0;
        for(int i = 0; i < inorder.length; i++) {
            if(inorder[i] == postorder[postEnd]) {
                position = i;
            }
        }
        int leftLength = position - inStart;
        root.left = construct(inorder, inStart, position - 1, postorder, postStart, postStart + leftLength - 1);//be careful about the index
        root.right = construct(inorder, position + 1, inEnd, postorder, postStart + leftLength, postEnd - 1);
        return root;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值