42. 连续子数组的最大和

一、题目

     HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)。

二、解法

2.1 方法一:动态规划
F(i):以array[i]为末尾元素的子数组的和的最大值,子数组的元素的相对位置不变
F(i)=  max(F(i-1)+array[i] , array[i])

//动态规划
int FindGreatestSumOfSubArray(vector<int> array) {
        if(array.empty()) return 0;
        int sum = array[0], tempsum = array[0]; //注意初始值 不能设为0 防止只有负数
        for(int i = 1; i < array.size(); i++) //从1开始 因为0的情况在初始化时完成了
        {
            tempsum = (tempsum < 0) ? array[i] : tempsum + array[i];
            sum = (tempsum > sum) ? tempsum : sum;
        }
        return sum;
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值