给出n个数字a_1,…a_n,问最多有多少个不重叠的非空区间,使得每个区间内数字的xor都等于0,即得出最大的k,使得存在k个区间(l[i],r[i]),满足1<=l[i]<=r[i]<=n,(1<=i<=k),r[i] < r[i+1],(1<=i<=k),且a[l[i]] xor a[l[i]+1] xor … xor a[r[i]] = 0,(1<=i<=k)
输入描述:第一行一个整数n,第二行n个整数a_1,a_2…a_n,对于30%的数据,n<=20,对于100%的数,n<=100000,a_i<=100000;
输出描述:一个整数表示最多的区间个数
import java.util.Scanner;
public class Kqujian {
static int maxn = 1000000;
static int[] a = new int[maxn];
static int[] b = new int[maxn];
static int[] c = new int[maxn];
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
while(in.hasNext()){
int ans = 0;
int pos = -1;
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
if(a[i] == 0){
ans++;
pos = i+1;
}
b[a[i]]++;
if(b[a[i]] != 0 && b[a[i]] % 2 == 0){
int temp = c[a[i]];
if(temp < pos)
continue;
int temp2 = 0;
for (int j = temp + 1; j < i; j++) {
temp2 = temp2 ^ a[j];
}
if(temp2 == 0){
ans++;
pos = i+1;
}
}else
c[a[i]] = i;
}
System.out.println(ans);
}
}
}