林轩田-机器学习基石 课堂笔记(一)A takes D and H to get g

1.From Learning to Machine Learning

Learning: Observations->learning->skill

Machine Learning: data->ML->skill

ps: skill — improve some performance measure (eg: prediction accuracy)


2.Key Essence of ML:(help decide whether to use ML)

  exists some ‘underlying pattern’ to be learned

      —— so ‘performance measure’ can be improved

  but no programmable (easy) definition

      —— so ML is needed

  somehow there is data about the pattern

      —— so ML has some ‘input’ to learn from


3.The Learning Model(※)


A more appropriate definition of ML: use data to compute hypothesis g target f .

NOTE:课中以银行是否会同意用户申请办理信用卡为例
1>收集的(单个)用户信息包含的内容,可理解为输入内容:


2>基本的符号含义以及其对应本例的含义:



3>假设函数集



从图中我们可以知道机器学习从由大量数据分析中得到假设函数集,从而得到一个能近似表示输入输出集映射关系的目标函数g,通过g来进行预测,

更通俗的来讲,机器学习是人工智能的一个分支,我们使用计算机设计一个系统,使他能根据提供的训练数据按照一定的方法来学习,随着训练数据次数的增加,该系统可以在性能上不断学习和改进,通过参数优化和学习模型,能够用于预测相关问题的输出。


4.ML vs DM/AI/Statistic

  Machine Learning: use data to compute hypothesis g that approximates target f

  Data Mining: use (huge) data to find property that is interesting

     PS: a. if ‘interesting property’ same as ‘hypothesis that approximate target’,

               ML=DM

            b. if ‘interesting property’ related to ‘hypothesis that approximate target’,

               DM can help ML (often, but not always)

  Artificial Intelligence: compute something that shows intelligent behavior

     PS: g ≈ f is something that shows intelligent behavior

           —— ML can realize AI, among other route

           e.g.: chess playing

                     traditional AI: game tree

                     ML for AI: ‘learning from board data’

  use data to make inference about an unknown process

     PS: g is a inference outcome;

           f is something unknown.

           —— Statistic can be used to achieve ML, traditional Statistic also focus on

        provable results with math assumptions, and care less about computation.



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值