R dbscan()中文说明
dbscan(fpc)
dbscan()所属R语言包:fpc
DBSCAN density reachability and connectivity clustering DBSCAN密�%BQ�可达性和连通性聚类 译者:生物统计家园网 机器人LoveR 描述----------Description---------- Generates a density based clustering of arbitrary shape as introduced in Ester et al. (1996). 生成一个任意形状的基于密度的聚类酯等中所介绍的。 (1996年)。 用法----------Usage---------- dbscan(data, eps, MinPts = 5, scale = FALSE, method = c("hybrid", "raw", "dist"), seeds = TRUE, showplot = FALSE, countmode = NULL) ## S3 method for class 'dbscan' print(x, ...) ## S3 method for class 'dbscan' plot(x, data, ...) ## S3 method for class 'dbscan' predict(object, data, newdata = NULL, predict.max=1000, ...) 参数----------Arguments---------- 参数:data data matrix, data.frame, dissimilarity matrix or dist-object 数据矩阵,数据框,相异矩阵或dist对象 参数:eps Reachability Distance 可达距离 参数:MinPts Reachability minimum no. of points 不可达性最低。点 参数:scale scale the data 缩放数据 参数:method "dist" treats data as distance matrix (relatively fast but memory expensive), "raw" treats data as raw data and avoids calculating a distance matrix (saves memory but may be slow), "hybrid" expects also raw data, but calculates partial distance matrices (very fast with moderate memory requirements ) “区”处理数据的距离矩阵(比较快,但内存价格昂贵),“原始”将数据作为原始数据,避免了计算距离矩阵(节省内存,但是可能会比较慢),“混合”预计也原始数据,但计算部分距离矩阵(非常快速有温和的内存要求) 参数:seeds FALSE to not include the isseed-vector in the dbscan-object FALSE不包含向量isseeddbscan对象 参数:showplot 0 = no plot, 1 = plot per iteration, 2 = plot per subiteration 0 =没有图,图每次迭代,2个=每亚迭代的图 参数:countmode NULL or vector of point numbers at which to report progress 在汇报工作进度NULL或向量的点号 参数:x object of class dbscan. 对象类dbscan。 参数:object object of class dbscan. 对象类dbscan。 参数:newdata matrix or data.frame with raw data to predict 矩阵或数据框的原始数据来预测 参数:predict.max max. batch size for predictions 最大。批量大小预测 参数:... Further arguments transferred to plot methods. 进一步的论据来绘制方法。 Details 详细信息----------Details---------- Clusters require a minimum no of points (MinPts) within a maximum distance (eps) around one of its members (the seed). Any point within eps around any point which satisfies the seed condition is a cluster member (recursively). Some points may not belong to any clusters (noise). 聚类需要一个最低点(MinPts)没有围绕其成员(种子)内的最大距离(EPS)。 EPS内的任何点周围的任何一点满足的种子条件是聚类成员(递归)。有些点可能不属于任何聚类(噪声)。 We have clustered a 100.000 x 2 dataset in 40 minutes on a Pentium M 1600 MHz. 我们聚集一100.000×2的Pentium M 1600 MHz的数据集在40分钟内。 print.dbscan shows a statistic of the number of points belonging to the clusters that are seeds and border points. print.dbscan属于种子和边界点的簇的数量的点示出的统计信息。 plot.dbscan distinguishes between seed and border points by plot symbol. plot.dbscan区分图符号的种子和边界点。 值----------Value---------- predict.dbscan gives out a vector of predicted clusters for the points in newdata. predict.dbscan给出了一个向量的预测聚类中的点newdata。 dbscan gives out an object of class 'dbscan' which is a LIST with components <table summary="R valueblock"> <tr valign="top"><td>cluster</td> <td> integer vector coding cluster membership with noise observations (singletons) coded as 0 </td></tr> <tr valign="top"><td>isseed</td> <td> logical vector indicating whether a point is a seed (not border, not noise)</td></tr> <tr valign="top"><td>eps</td> <td> parameter eps</td></tr> <tr valign="top"><td>MinPts</td> <td> parameter MinPts</td></tr> </table> dbscan给出了一个对象类的DBSCAN“这是一个组件列表,表summary="R valueblock"> <tr valign="top"> <TD> cluster </ TD> < TD>整数向量编码聚类成员编码为0的的噪声意见(单身)</ TD> </ TR> <tr valign="top"> <TD>isseed </ TD> <TD>逻辑向量表示一个点是否是一个种子(没有边界,没有噪音)</ TD> </ TR> <tr valign="top"> <TD>eps </ TD> <TD>参数EPS </ TD> </ TR> <tr valign="top"> <TD>MinPts </ TD> <TD>参数MinPts </ TD> </ TR> </ TABLE> 注意----------Note---------- this is a simplified version of the original algorithm (no K-D-trees 这是一个简化版本,对原有算法(不KD-树 (作者)----------Author(s)---------- Jens Oehlschlaegel, based on a draft by Christian Hennig. 参考文献----------References---------- (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Institute for Computer Science, University of Munich. Proceedings of 2nd International Conference on Knowledge Discovery and Data 实例----------Examples---------- set.seed(665544) n <- 600 x <- cbind(runif(10, 0, 10)+rnorm(n, sd=0.2), runif(10, 0, 10)+rnorm(n, sd=0.2)) par(bg="grey40") ds <- dbscan(x, 0.2) # run with showplot=1 to see how dbscan works.[与showplot = 1,,看如何DBSCAN工作。] ds plot(ds, x) x2 <- matrix(0,nrow=4,ncol=2) x255B1,] <- c(5,2) x2[2,] <- c(8,3) x2[3,] <- c(4,4) x2[4,] <- c(9,9) predict(ds, x, x2) n <- 600 x <- cbind((1:3)+rnorm(n, sd=0.2), (1:3)+rnorm(n, sd=0.2)) system.time(ds <- dbscan(x, 0.3, countmode=NULL, method="raw"))[3] system.time(dsb <- dbscan(x, 0.3, countmode=NULL, method="hybrid"))[3] system.time(dsc <- dbscan(dist(x), 0.3, countmode=NULL, method="dist"))[3] 转载请注明:出自 生物统计家园网(http://www.biostatistic.net)。 注: 注1:为了方便大家学习,本文档为生物统计家园网机器人LoveR翻译而成,仅供个人R语言学习参考使用,生物统计家园保留版权。 注2:由于是机器人自动翻译,难免有不准确之处,使用时仔细对照中、英文内容进行反复理解,可以帮助R语言的学习。 注3:如遇到不准确之处,请在本贴的后面进行回帖,我们会逐渐进行修订。 |
R dbscan()中文说明
最新推荐文章于 2025-07-06 15:29:28 发布